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Abstract

El estudio de la resiliencia en redes complejas tradicionalmente se ha centrado en
analizar fallos en nodos altamente conectados, dejando de lado vulnerabilidades
potenciales en nodos estructuralmente menos relevantes. Este trabajo explora la
hipétesis de que ciertos nodos periféricos podrian desempeiar roles criticos no
evidentes en la robustez del sistema. Combinando herramientas de teoria de redes
con enfoques de curiosidad computacional —que emulan procesos del pensamiento
lateral humano—, se propone una metodologia alternativa para identificar puntos
fragiles atipicos. Se analizan dos redes reales con topologias contrastantes: una red
social (Facebook) y una red de infraestructura (aeropuertos de EE. UU.), some-
tiéndolas a dos simulaciones de ataques, una dirigida y otra basada en caminatas
aleatorias sesgadas hacia nodos de baja centralidad. Los resultados revelan que si
bien las caracteristicas topoldgicas exploradas sugerian que la red de aeropuertos
podria ser susceptible a ataques no convencionales, una estrategia de curiosidad de
caminata aleatoria sesgada hacia nodos de baja centralidad de grado no pareceria
poder descubrir riesgos no triviales ni relevar anomalias. De hecho, nuestro experi-
mento sugiere que las estrategias convencionales poseen mayor eficacia tanto en
una red de mayor heterogeneidad y menor dependencia de hubs como aeropuertos
como en una red hub-dependiente como Facebook.

1. Introduccion

El exponencial aumento de la complejidad de la interconexidn entre sistemas en dominios como
las redes sociales y de transporte ha facilitado la disponibilidad y andlisis de grandes volimenes de
datos. Estas redes constituyen un insumo clave para la minerfa de datos en ciencia y tecnologia, dado
su potencial para modelar fenémenos sociales, tecnoldgicos y econémicos interdependientes. En este
contexto, el estudio de la resiliencia de sistemas interconectados cobra creciente relevancia: compren-
der cémo estas redes resisten perturbaciones es fundamental para anticipar colapsos sistémicos, ya
sea en redes sociales, infraestructuras criticas o sistemas ecoldgicos. Tradicionalmente, los estudios
de robustez se han centrado en ataques a nodos altamente conectados, asumiendo que son los puntos
mads vulnerables. Sin embargo, esta aproximacion puede pasar por alto configuraciones criticas no
evidentes, donde nodos aparentemente marginales podrian desencadenar disrupciones sistémicas.
Por tal razén, nos motiva identificar estas vulnerabilidades ocultas para disefar infraestructuras mas
resilientes, especialmente en contextos donde los ataques convencionales podrian omitir riesgos no
evidentes que terminen siendo criticos.

En los estudios clésicos de robustez de redes, se recurre habitualmente a simulaciones de ataques
aleatorios o dirigidos a nodos de alta centralidad (hubs), lo cual revela las vulnerabilidades mds obvias,
pero descuida configuraciones atipicas que podrian desencadenar fallos inesperados, Freitas., et al [1].
Para superar estas limitaciones, han emergido enfoques de bisqueda creativa en redes sociales, como
Socialz [2], que utilizan algoritmos evolutivos guiados por novedad para simular comportamientos de
usuarios no convencionales y descubrir errores que escapan a las pruebas tradicionales, Zanartu., et al



[3]. De manera similar, en redes de transporte, herramientas de monitoreo dindmico de la centralidad
de intermediacién permiten anticipar cuellos de botella antes de que se materialicen en situaciones
reales de congestion, Furno et al., [4]. Mds aun, las heuristicas de curiosidad computacional, imple-
mentadas por ejemplo en AutoOD, exploran de forma no deterministicos patrones inusuales en datos
complejos, Li et al., [5], y marcos adversariales como VCAT incorporan recompensas por novedad
para revelar vectores de ataque inéditos en vehiculos auténomos, Cai et al., [6].

Por ende, acd nos proponemos evaluar empiricamente la eficacia comparativa de dos estrategias
de ataque en redes con topologias contrastantes: (1) un método clasico que ataca primero los nodos
centrales y (2) una heuristica de curiosidad computacional que sesga la bisqueda hacia nodos
periféricos y topolégicamente atipicos. Para cada red, una subred de Facebook y la componente
gigante binarizada de una red global de conexiones aéreas, llevaremos a cabo dos simulaciones con
estrategias diferenciales (convencional vs. curiosa), midiendo para cada simulacién, variaciones tanto
la conectividad global (tamaiio relativo de la componente gigante) como en la eficiencia global. El
objetivo de estas simulaciones serd identificar patrones diferenciales de fragilidad ante los dos tipos
de ataques.

Para facilitar la claridad de la exposicion, el articulo se organiza en las siguientes secciones: (A)
Meétodos — Describe en detalle las dos estrategias de ataque comparadas, el andlisis exploratorio
preliminar a realizar sobre las redes analizadas (Facebook y aeropuertos) y las métricas de evalua-
cion empleadas. (B) Resultados y Discusiéon — Presenta los hallazgos principales, contrastando la
efectividad de ambos métodos para identificar vulnerabilidades, y analiza las implicaciones de estos
resultados en el contexto de redes con diferentes topologias. (C) Conclusiones — Sintetiza las contri-
buciones clave del estudio, reflexiona sobre sus limitaciones y propone futuras lineas de investigacién
para extender este trabajo. El objetivo del presente informe es esclarecer si una estrategia de ataque
aleatoria con sesgo hacia nodos de baja de centralidad puede o no puede detectar vulnerabilidades
anomalas que no podrian ser detectadas por un ataque convencional como una estrategia dirigida
clésica.

2. Métodos

2.1. Disefio Experimental

Con el objetivo de discernir si vulnerabilidades no evidentes pueden ser reveladas mediante una
busqueda atipica, el estudio compara dos estrategias de ataque:

1. Enfoque clasico: Eliminacion progresiva borrando primero los enlaces de los nodos con
mayor centralidad de grado.

2. Heuristica de curiosidad: Recorrido aleatorio con sesgo hacia nodos de bajo grado. El
sesgo aplicado utiliza una razén de probabilidad 1.0/0.1.
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La misma se implementé en el siguiente c6digo:

def estrategia_curiosa(G, centralidad_dict):
valores = list(centralidad_dict.items())
valores.sort (key=lambda x: x[1]) # orden ascendente
nodos = [x[0] for x in valores]
pesos = np.linspace(1.0, 0.1, len(nodos)) # sesgo hacia baja centralidad
pesos /= pesos.sum()
return random.choices(nodos, weights=pesos, k=len(nodos))
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Bajo este sesgo, el nodo con menor centralidad tiene 10 veces mds chances de ser elegido que el de
mayor centralidad. De todas las posibles medidas de centralidad, optamos por la centralidad de grado.
Creemos que esta métrica provee informacion critica para nuestro informe puesto que nos revela
aquellas zonas tipicamente priorizadas por estrategias tradicionales donde se concentran mds nodos.
Futuras investigaciones podrian contemplantar un indice con distintas medidas de centralidad tal
como grado e intermediacién, y explorar dichas estrategias en un mas variado conjunto de topologias
(como experimentar con redes pesadas y direccionadas).



2.2. Datasets y Preprocesamiento

Para aplicar tales estrategias, se seleccionaron redes representativas de dominios contrastantes
(comunicacidn y transporte) dado que presentan topologias diferentes en las cudles podriamos esperar
dindmicas de fallo criticamente distintas.

Facebook: Este grafo representa circulos de amistad en la plataforma Facebook. Los datos fueron
recolectados mediante una encuesta andnima que capturd relaciones de amistad entre usuarios. Cada
nodo representa un perfil individual de usuario, y cada arista no dirigida indica la existencia de una
relacién de amistad mutua entre dos usuarios. El grafo cuenta con 4039 nodos y 88.234 enlaces, lo
que refleja un nivel considerable de interconexién social. Se trata de una red no dirigida, no ponderada
y conexa, lo que implica que existe un camino entre cualquier par de nodos en el grafo.

Aeropuerto: Este grafo dirigido y ponderado representa rutas aéreas entre aeropuertos de Estados
Unidos durante el afio 2010. Cada nodo corresponde a un aeropuerto, y cada arista dirigida representa
la existencia de vuelos programados desde un aeropuerto origen hacia un destino especifico. El peso
asignado a cada arista indica la cantidad total de vuelos realizados en esa ruta durante el afio. La red
contiene 1574 nodos y 28.236 enlaces dirigidos, y se caracteriza por ser disconexa, tanto en términos
de conectividad fuerte como de conectividad débil. Esto implica que no existe un camino (ni siquiera
ignorando la direccién de los enlaces) que conecte a todos los nodos entre si.

Cuadro 1: Caracteristicas de las redes analizadas

Propiedad Facebook Aeropuertos

Nodos 4,039 1,402 (componente gigante)
Aristas 88,234 17,013 (binarizada)
Tipo Social Infraestructura

Distribucion de grado  Libre de escala Ley de potencia truncada

Transformaciones aplicadas:

= Aeropuertos: De manera tal que podamos realizar una comparacién homogénea entre ambas
redes, se optd por realizar una binarizacion y uso de la componente gigante de la red de
Aeropuertos. Entendemos que de esta manera se sacrifica especificidad de direccién/peso,
pero al mismo tiempo asi permitimos un andlisis estructural puro. Cabe aclarar que se
eliminaron los pesos sin aplicar umbrales, conservando todas las conexiones y, por ende, la
densidad original del grafo.

2.3. Analisis Exploratorio Previo

Antes de implementar las estrategias de ataque, se llevé a cabo un andlisis exploratorio estructural
con el fin de comprender mejor las propiedades topoldgicas de las redes originales, evaluar la
adecuacion de prototipos tedricos como modelos de referencia y asi preveer que podriamos esperar
encontrar al aplicar cada simulacién.

1. Comparacion topologica Para evaluar la robustez estructural y detectar vulnerabilidades
potenciales en las redes analizadas, se implementd una comparacién sistemdtica entre
algunas propiedades topoldgicas de la red de Aeropuertos y la red social de Facebook. La
metodologia combiné andlisis visuales y métricas cuantitativas. Se calcularon y compararon
métricas topoldgicas que encontramos relevantes tal como coeficientes de clustering y grados
promedio puesto que nos ofrecen informacidn sobre potenciales concentraciones de fallos
en las redes. Al analizar estos indicadores, buscamos identificar patrones diferenciales de
organizacion y resiliencia que nos permitan preveer que esperar al aplicar cada estrategia de
ataque.

2. Comparacion de simulaciones de prototipos.
De manera tal que podamos evaluar como podrian adecuarse nuestros descubrimientos
de cada red a evaluar con prototipos generalizados de redes, realizamos simulaciones de
modelos.

= Metodologia implementada para realizar las simulaciones.
Parametros de entrada. Antes de las simulaciones, se calcularon dos pardmetros clave
a partir de cada red real:
* Nimero de nodos: se obtuvo directamente del grafo real.
* Grado medio: se utiliz6 como referencia para garantizar que las redes sintéticas
tuvieran una densidad de enlaces comparable.



Ademads, se calculé un pardmetro denominado mcero, necesario para el modelo
Barabdési-Albert. Este pardmetro define el nimero de enlaces que se afiaden en ca-
da paso del modelo de crecimiento preferencial, permitiendo mantener la estructura de
red realista.

Modelos utilizados y simulaciones. Para cada grafo bajo estudio, se realizaron simula-
ciones con los tres modelos de redes aleatorias:

Modelo Barabdsi-Albert (BA). Este modelo genera redes de crecimiento con conexion
preferencial. Para asemejarse a la red real:

¢ Se utiliz6 el mismo nimero de nodos que el grafo real.

* Se calcul6 el pardmetro mcero a partir del grado medio real, de modo que cada
nuevo nodo agregado tuviera aproximadamente la misma cantidad de enlaces que
un nodo promedio.

Esto permitié que las redes generadas tuvieran un grado medio y una densidad de
enlaces similares a las reales, asegurando comparaciones significativas.
Modelo Erdds-Rényi (ER). Este modelo crea redes aleatorias donde cada par de nodos
se conecta con igual probabilidad. Para replicar la densidad de enlaces:

¢ Se fij6 el mismo niimero de nodos que el grafo real.

* Se ajusto el nimero de aristas al valor observado en la red real.

De esta manera, las redes ER simuladas conservaron la misma densidad promedio de
conexiones que la red real, facilitando la comparacién de métricas como el clustering y
la distancia promedio.

Modelo Watts-Strogatz (WS). Este modelo genera redes de “pequefio mundo”, interme-
dias entre redes regulares y aleatorias. Para asemejarse a la red real:

* Se utiliz6 el mismo nimero de nodos.

* Se determind el nimero de vecinos iniciales de cada nodo a partir del grado medio
real, garantizando una conectividad local similar.

* Se usé una probabilidad de reconexién baja (0.03) para introducir aleatoriedad y
mantener la estructura local.

Esto permitié que las redes simuladas conservaran caracteristicas similares a la red real
tanto en conectividad local como en estructura global.

Con estos ajustes, cada modelo gener6 redes sintéticas que imitaban las propiedades
estructurales bésicas del grafo real de aeropuertos. Asf, se aseguraron comparaciones va-
lidas y relevantes para evaluar la idoneidad de los modelos tedéricos en la representacién
de redes reales.

Ejecucion de las simulaciones de prototipos. Para cada modelo, se realizaron 1000
simulaciones independientes para garantizar la robustez estadistica de los resultados.
Estas simulaciones se implementaron en paralelo mediante la librerfa joblib, optimi-
zando el uso de multiples nicleos de procesamiento. Los resultados se guardaron en
archivos utilizando pickle, y se implement6 un mecanismo de guardado incremental
por bloques para evitar la pérdida de datos en caso de interrupciones.

3. Analisis de centralidad.
Se calcularon métricas de centralidad de grado para todos los nodos en ambas redes, como
paso necesario para implementar ambas estrategias de ataque. Este andlisis también sirvi
como diagnéstico de la jerarquia estructural implicita en la red, y permitié anticipar posibles
puntos de falla clave. Como complemento de andlisis topolégico, cdlculamos algunas
métricas de centralidad adicionales que, si bien no se implementan en las simulaciones de
ataque, su comparacion nos brindan informacién adicional sobre las potencialidades de falla
de cada red mientras obtenemos de esto una caracterizacién mds detallada de dichas redes.

4. Deteccion de comunidades.

Con el objetivo de evaluar la cohesion estructural de las redes y preveer posibles puntos
de fragmentacion, se aplicaron algoritmos de deteccién de comunidades. Por un lado, se
utiliz6 el algoritmo de Louvain para identificar particiones Optimas segin modularidad.
Se reportaron los valores de modularidad obtenidos y se visualizaron las comunidades
detectadas. Por otro lado, se replicé el andlisis con el algoritmo de Girvan-Newman para
comparar la estabilidad y consistencia de la particién obtenida. Realizamos este andlisis en
busqueda de evidencia sobre la robustez de estructuras mesoscépicas (comunidades) ante
perturbaciones locales.



Dado que el algoritmo de Girvan—Newman tiene un alto costo computacional y no escala
bien para grafos grandes, se adoptaron varias medidas précticas para hacerlo ejecutable
en un entorno real. El experimento se realizé en un servidor Amazon EC2, configurado
con un entorno virtual que garantiz6 la disponibilidad de dependencias y el aislamiento de
ejecucion. Las redes bajo estudio fueron cargadas desde archivos de texto y procesadas con la
libreria networkx. El script fue ejecutado en segundo plano utilizando nohup, permitiendo
continuar el andlisis incluso si se cerraba la sesién. En cada iteracion del algoritmo se calcu-
laron dos métricas clave: el nimero de comunidades generadas y el valor de modularidad
correspondiente. Estos datos se registraron en un archivo CSV, lo que permiti6 realizar un
seguimiento completo de la evolucién del proceso. Ademads, la mejor particién encontrada
fue almacenada automdticamente en formato . pk1l, conservando aquella con la modularidad
méxima alcanzada hasta el momento. Estas decisiones permitieron ejecutar el andlisis de co-
munidades con Girvan-Newman de forma controlada y reproducible, priorizando resultados
utiles sin agotar los recursos disponibles.

El proceso de maximizacion de la modularidad mediante el algoritmo de Girvan—-Newman
tuvo una duracion total de 10 horas para la red de Aeropuertos y de 32 horas para la red
de Facebook. L.a modularidad maxima se alcanzé en la iteracién 168 para Aeropuertos y
en la iteraciéon 8 para Facebook. Ver imagen mas abajo.

2.4. Meétricas de Evaluacion

Las métricas se eligieron para capturar tanto la resiliencia global como patrones locales de fragilidad
(Tabla[2).

Cuadro 2: Métricas de robustez y su relevancia

Meétrica Justificacion

Tamafio relativo de la componente gigante (Ng/N)  Efecto en la conectividad global

Eficiencia global Capacidad de comunicacién en redes parcialmente conec-
tadas

A continuacién detallaremos los resultados de este articulo, comenzando por el andlisis explora-
torio preliminar de cada red y finalizando con los hallazgos encontrados luego de implementar las
estrategias de ataque evaluadas.



3. Resultados y discusion

3.1. Analisis Exploratorio preliminar

3.1.1. Comparacion de la red de Aeropuertos y red social Facebook

Para identificar vulnerabilidades no evidentes y evaluar rigurosamente la robustez de nuestras
dos redes bajo andlisis, como primer paso resulté fundamental la caracterizacion precisa de las
propiedades topolégicas mediante andlisis comparativos con modelos tedricos.

3.1.2. Medidas topolégicas comparativas

Distribucion de coeficientes de clustering (Frecuencia relativa)

A) Aeropuerto B) Facebook
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Figura 1: Distribucién de Coeficientes de Clustering.

Cuadro comparativa de métricas

Métrica Aeropuertos (Componente Gigante Binarizada) | Facebook
N° de nodos 1402 4039
N° de enlaces 17013 88234
Grado promedio 24.2696 43.6910
Distancia promedio (d) 3.0217 3.6925
Distancia maxima (diametro) 8.0000 8.0000
Clustering promedio (C') 0.5575 0.6055

Figura 2: Comparacién de métricas de las redes de Aeropuertos(Componente Gigante Binarizada) y
Facebook.

Nos motivé averiguar el coeficiente de clustering y su distribucién puesto a que la conectividad que
tienen los vecinos de los nodos nos puede dar informacién adicional sobre la ubicacién de potenciales
centros de falla de las redes. Tal como se observa en los datos provistos por la Figura 1 y la Figura
2, la similitud en clustering pero divergencia en grado promedio sugiere que las redes sociales y
de infraestructura tienen mecanismos distintos de resiliencia: mientras Facebook depende de hubs,

los aeropuertos parecerian redistribuir criticidad en nodos intermedios (no necesariamente los mas
conectados).



3.1.3. Modelos de Redes — Caracteristicas Generales

Abhora bien, ;Qué tan bien capturan los prototipos de redes las caracteristicas topoldgicas que
sugieren estos contrastantes mecanismos de resiliencia? Para responder tal pregunta, comparamos la
distribucién de grado de los datasets con la de una instancia de los prototipos:

Aeropuertos (Red Real) Erdés-Rényi Watts-Strogatz Barabasi-Albert

10 10 10 210 a0 ax0 2010 ax
Grado (log) Grado (log) Grado (log) Grado (l0g)

(a) Aeropuertos (log-log).

Facebook (Red Real) Erdés-Rényi Watts-strogatz Barabasi-Albert

s

(b) Facebook (log-log).

Figura 3: Comparacion de las distribuciones de grados (log-log) para Aeropuertos y Facebook vs
modelos de téoricos.

Distribucion de Grados

Grafo Modelo Clustering promedio Distancia promedio Grado promedio
Red Real 0.5575 3.0217 24.2696
ACronUerios Erdés—-Rényi 0.0172 2.6247 24.4422
PUCTIOS  Wwats-Strogatz 0.5267 3.1572 24.0000
Barabidsi—Albert 0.0529 2.5558 23.7946
Red Real 0.6055 3.6925 43.6910
Facebook Erdds—-Rényi 0.0108 2.6071 43.6019
Watts—Strogatz 0.5375 2.9666 44.0000
Barabdsi—-Albert 0.0363 2.5363 41.7816

Figura 4: Métricas topoldgicas para las redes de Aeropuertos y Facebook, y sus modelos de referencia

Cuadro resumen de métricas topolégicas comparativas

Observaciones Tal como observamos en la Figura 3 y la Figura 4, los modelos cldsicos (ER, BA)
no parecieran capturar la importancia estructural de nodos periféricos con alto clustering. Por su parte,
la cercania entre Watts-Strogatz y las redes reales sugiere que la resiliencia depende de estructuras
locales (tridngulos sociales) mas que de hubs centrales. La brecha entre el clustering real (0.5575) y
el predicho por Barabdsi-Albert (0.0529) en aeropuertos evidencia que los modelos basados en hubs
subestiman la importancia de nodos periféricos con alta cohesion local.



3.1.4. Comparacion de distribucion simulada de métricas topolégicas de los modelos
prototipos de Erdos—Rényi, Watts—Strogatz y Barabasi—-Albert

(Qué pasa cuando realizamos simulaciones sobre tales prototipos?
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Figura 5: Distribucién simulada de métricas topoldgicas con 1000 repeticiones para Aeropuertos (a)

Distribucién simulada (1000 repeticiones) vs observada de métricas de red (Aeropuerto)
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Resultados observados

Aeropuertos - Prototipos de Redes Los resultados del andlisis de simulaciones para cada uno
de los modelos de red (Barabasi-Albert, Erdés-Rényi y Watts-Strogatz), calculando el promedio y
la desviacion estindar de métricas clave como el coeficiente de clustering y la distancia promedio.
En todos los casos, los valores observados en la red real se ubicaron fuera del rango tipico de los
modelos simulados, especialmente en lo que respecta al clustering.

Este resultado sugiere que la estructura de la red de aeropuertos no es producto del azar, sino
que responde a patrones especificos de organizacién que los modelos aleatorios no logran capturar
adecuadamente. No obstante, es importante destacar que el modelo de Erd6s-Rényi predice con
bastante precision el grado promedio observado en ambas redes reales.

Respecto al coeficiente de clustering, los modelos Barabasi-Albert y Erdds-Rényi presentan valores
promedio + 2 desviaciones estdndar que no alcanzan los niveles observados en la red real, mientras
que el modelo de Watts-Strogatz es el que mejor aproxima este indicador. En cuanto a la distancia
promedio, el modelo Watts-Strogatz tiende a sobreestimarla en aproximadamente 0,8 unidades,
mientras que los modelos Barabdsi-Albert y Erd6s-Rényi la subestiman en alrededor de 0,5 unidades
siendo estos las mejores aproximaciones
Facebook - Prototipos de Redes La red real de Facebook presenta una estructura compleja que
no logra ser replicada por completo mediante los modelos prototipo tradicionales utilizados en este
andlisis. Al comparar sus principales métricas con las obtenidas a partir de 1000 simulaciones de los
modelos de Erd6s—Rényi, Watts—Strogatz y Barabdsi—Albert, se observan diferencias importantes
que permiten evaluar las limitaciones de cada uno.

En primer lugar, el modelo de Barabasi—Albert es el tinico que consigue reproducir con precisién
el grado promedio de la red real de Facebook. Esto se debe a que dicho modelo se basa en un
mecanismo de crecimiento por adjuncién preferencial, 1o que genera distribuciones de grado similares
a las observadas en redes reales, especialmente en aquellas con alta heterogeneidad estructural.
El modelo de Erdés—Rényi también alcanza un valor cercano, aunque esto se explica por una
parametrizacion intencional que fuerza la coincidencia del grado medio. Por otro lado, el modelo de
Watts—Strogatz subestima levemente esta métrica, lo que refleja su incapacidad para generar nodos
altamente conectados.

Sin embargo, cuando se analiza el clustering promedio, que refleja la tendencia de los nodos a
formar grupos cerrados o comunidades locales, se evidencian limitaciones importantes. La red de
Facebook presenta un alto nivel de agrupamiento, propio de las redes sociales, que no es capturado
ni por el modelo de Erd6s—Rényi ni por el de Barabasi—Albert. Ambos generan estructuras con un
clustering promedio significativamente mds bajo. En cambio, el modelo de Watts—Strogatz ofrece
una mejor aproximacion, aunque atn por debajo del valor observado en la red real. Este resultado
pone de manifiesto la dificultad de los modelos cldsicos para reproducir la cohesién local tipica de
redes sociales complejas.

Respecto de la distancia promedio —entendida como la longitud media de los caminos mas
cortos entre pares de nodos—, la red real exhibe una estructura eficiente, caracteristica de las
llamadas redes “small-world”. El modelo de Watts—Strogatz logra aproximarse razonablemente a este
comportamiento, mientras que el modelo de Erd6s—Rényi presenta distancias demasiado reducidas
y el de Barabdsi—Albert, distancias excesivamente bajas. Estos resultados muestran que, aunque el
modelo WS no replica fielmente todas las métricas, si consigue reflejar de forma mas equilibrada la
eficiencia estructural observada en la red.

En conjunto, los resultados sugieren que ningin modelo logra reproducir de manera integral las
propiedades clave de la red de Facebook. Mientras que Barabasi—Albert reproduce con precision el
grado promedio, falla en capturar la cohesién local. Watts—Strogatz, en cambio, se aproxima mejor
al clustering y a la distancia promedio, pero subestima el grado. Esto evidencia las limitaciones de
los modelos prototipo cldsicos para representar adecuadamente la complejidad estructural de redes
sociales reales, y refuerza la necesidad de explorar enfoques mas flexibles o hibridos que integren
multiples mecanismos de formacién de enlaces.



3.2. Centralidades

En el marco de la hipétesis planteada, resulta relevante primero clasificar los nodos segtin alguna
medida de centralidad que nos permita, por un lado caracterizar a las redes, y por otro, ejecutar
nuestras dos estrategias de ataque. Con este objetivo, cuantificamos y caracterizamos estos nodos para
comprender su relevancia dentro de la estructura de la red. Para ejecutar nuestras estrategias de ataque,
consideramos que utilizar la centralidad de grado como criterio para definir y medir la importancia
de los hubs. De manera adicional, calculamos otros tipos de centralidades (como intermediacién)
con el objetivo de caracterizar a las redes previo a la ejecucién de las simulaciones. A fin de facilitar
el anlisis de tales caracterizaciones, se construyeron los graficos [6a} [6b] [Sb] y [Sa] de las redes de
Aeropuertos y Facebook.

3.2.1. Comparacion de Centralidad de Intermediacion y Grado - Facebook

Centralidad de Intermediacién del Grafo de Facebook Centralidad de Grado - Facebook
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(a) Centralidad de Intermediacion - Facebook (b) Centralidad de Grado - Facebook

Figura 6: Comparacién Centralidad de Grado entre (a) Aeropuerto y (b) Facebook.

Como puede observarse en las figuras[6a] y [6b} la estructura de la red analizada presenta comunida-
des mds compactas y claramente delimitadas, lo que sugiere una organizacion interna caracterizada
por altos niveles de cohesion entre los nodos de cada grupo. Asimismo, se evidencia un patrén estruc-
tural variable y de cardcter aleatorio, lo cual indica la ausencia de una distribucion fija o predecible
en las conexiones entre los elementos de la red.

En la figura correspondiente a la centralidad de grado, se identifican los hubs o influencers, es decir,
aquellos nodos con un alto niimero de conexiones directas. Por otro lado, en la figura de centralidad
de intermediacién se destacan aquellos nodos que, aunque no necesariamente sean influencers,
desempeiian un papel crucial en el flujo de informacién al actuar como puentes entre distintas partes
de la red, facilitando su propagacién a través de toda la estructura.

Distribucién de Centralidad de Grado - Facebook

6n de la C i de Inter iacion (

w @ | Media: 0.001
103
103
2 K] 2
§ 102 § 10
.g E
£10 10!
10° | r ﬂ ﬂ | | 10° | | [ |
0.0 01 02 03 0.4 05 000 005 010 015 020 0.25
Centralidad de intermediacion Centralidad de grado
(a) Distribucién de centralidad de intermediacion (b) Distribucién de centralidad de Grado del grafo
del grafo de Facebook de Facebook

Figura 7: Distribucién de centralidad de intermediacién y Grado
Otro aspecto relevante que puede observarse las figuras [7a]y [7b]es la presencia de hubs, representa-

dos principalmente por los influencers, quienes actiian como nodos centrales con un alto grado de
conexion y desempefian un papel clave en la difusién de informacién dentro de la red.
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3.2.2. Comparacion de Centralidad de Intermediacion y Grado - Aeropuertos

Centralidad de Intermediacion (Binaria) del Grafo de Aeropuertos Centralidad de Grado - Aeropuertos
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Figura 8: Comparacion entre Centralidad de Intermediacién (a) y Centralidad de Grado (b) en la red
de aeropuertos.
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Figura 9: Distribucion de centralidad de intermediacién (a) y Distribucién de centralidad de Grado (b)

En la visualizacién de la centralidad de grado de la red de aeropuertos, se observa que algunos
nodos con alta centralidad, coloreados en verde, se destacan por ser ciertos aeropuertos ubicados en
zonas periféricas, como los que conectan con el interior de una ciudad. Esta visualizacién permite
identificar rdpidamente su rol estratégico como nodos de escala obligada para acceder a regiones con
menor conectividad directa. Dichos aeropuertos actian como puntos clave de enlace, a pesar de estar
geograficamente aislados.
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3.2.3. Correlacion lineal entre centralidades

Grado de Correlacién lineal entre Centralidades - Facebook Grado de Correlacion lineal entre Centralidades - Aeropuertos
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Figura 10: Grado de Correlacion lineal entre Centralidades

Del andlisis del grado de correlacion lineal entre las centralidades de las redes bajo estudio, que se
presentan en las figuras[T0a]y [TOB] se observa que los aeropuertos con mayor nimero de conexiones
directas (grado) también tienden a ser globalmente relevantes segiin las medidas de Eigenvector y
PageRank, con correlaciones de 0.96 y 0.95, respectivamente. Esto indica que los hubs mds grandes
no solo concentran rutas, sino que estin conectados con otros acropuertos importantes dentro de la red.
Por otro lado, la intermediacién exhibe una dindmica distinta: sus correlaciones mas bajas con Grado
(0.51), Eigenvector (0.35) y PageRank (0.67) indican que resalta aeropuertos que, aunque menos
conectados, desempefian un rol estratégico como puentes entre regiones o zonas periféricas. Estos
resultados parecen mostrar una estructura dual en la red de aeropuertos, donde coexisten grandes
centros de trafico con nodos clave que garantizan la conectividad entre distintas partes del sistema.

En la red de Facebook, las centralidades muestran correlaciones lineales en su mayoria moderadas o
bajas. Grado se relaciona con PageRank (0.67) y Eigenvector (0.57), pero menos con Intermediacién
(0.45) y Cercania (0.27). Intermediacién tiene una alta correlacién solo con PageRank (0.77), y
Eigenvector apenas se relaciona con otras medidas (por ejemplo, —0.08 con Cercania y 0.02 con Inter-
mediacién). Este patrén indica que la red no concentra su estructura en pocos nodos dominantes, sino
que diferentes actores cumplen roles distintos: conectividad, influencia estructural o intermediacidn,
reflejando una red mas distribuida y funcionalmente diversa.
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3.2.4. Comunidades.

Los gréficos en las figuras [ITb] y [[Tal muestran la evolucién de la modularidad a lo largo de
las iteraciones para ambas redes durante la ejecucidn del algoritmo. Realizamos esto con el fin
de encontrar el nimero 6ptimo de comunidades con el algoritmo de Girvan-Newman, el cual se
obtiene del maximo de modularidad en proceso de iteraciones. En base a los resultados realizamos
las visualizaciones subsiguientes.

Evolucién de la modularidad vs iteraciones (Girvan-Newman) - Facebook Evolucién de la modularidad vs iteraciones (Girvan-Newman) - Aeropuertos
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(a) Facebook - Modularidad vs Iteraciones (b) Aeropuertos - Modularidad vs Iteraciones

Figura 11: Modularidad vs Iteraciones para las redes de Facebook y Aeropuertos

3.2.5. Comunidades detectadas para la red social Facebook por los métodos de Louvain y
Girvan-Newman

Idades detectadas en Ia Red
- Modul 1 0.7390 - Nis

Comunidades detectadas en la Red Social Facebook (Louvain)

Comunidades

0

(a) Facebook - Comunidades por método de Girvan-
Newman (b) Facebook - Comunidades por método de Louvain

Figura 12: Comunidades detectadas en la red de Facebook utilizando los métodos de Girvan-Newman
y Louvain

Tal como podriamos esperar en una red social, ambos métodos detectan comunidades bastante
densas y separadas entre si. Sin embargo: En Girvan-Newman, observamos menos comunidades
(9) y mas claramente separadas.En Louvain, hay una mayor cantidad de comunidades (15), algunas
mads pequefas o subdivisiones mas finas. Esto sugiere una estructura modular jerdrquica, donde
ciertas regiones estin muy densamente conectadas internamente pero débilmente conectadas con el
resto de la red. Los pocos nodos que conectan distintas comunidades (puentes entre clusters) juegan
un rol clave en la conectividad global. En el método Girvan-Newman, estas conexiones son mas
visibles debido a cémo elimina aristas de mayor centralidad. Podriamos esperar que si se atacan
especificamente estos nodos puente, se pueda fragmentar la red rdpidamente, aunque estos nodos no
necesariamente tengan el mayor grado. Esto tiene implicancias para nuestra estrategia de ¢uriosidad",
pues podriamos encontrar en tales nodos (posiblemente priorizados por el sesgo curioso), alguna
vulnerabilidad de bajo grado que termine causando una disrupcidn sistemica. Ahora bien, dicha
estrategia, si bien podria proveernos de informacion util en torno a la deteccion de anomalias, no
esperamos que sea mas efectiva que atacar nodos de alta centralidad de grado. En el dataset de
Facebook, como hay hubs conectando muchas comunidades, removerlos puede causar disrupciones
sistémicas (desconectar grandes partes de la red).
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3.2.6. Comunidades detectadas para la red de Aeropuertos por los métodos de Louvain y
Girvan-Newman

Comunidades detectadas en la Red de Aeropuertos (Girvan-Newman) Comunidades detectadas en la Red de Aeropuertos (Louvain)
Iteracién 168 - Modularidad: 0.2174 - Numer

imero de comunidades: 169 - Tiempo: 10 hs

(a) Girvan-Newman (b) Louvain

Figura 13: Comunidades detectadas en la red de aeropuertos utilizando los métodos de Girvan-
Newman y Louvain.

Girvan—Newman sugiere una red muy vulnerable a estrategias dirigidas dado a que pocos nodos
conectan grandes sectores de la red (centralizacidn) por lo que eliminar un hub podria fragmentar
la red fuertemente. Ahora bien, Louvain, al identificar mas comunidades pequeiias, reduce esta
vulnerabilidad. Pareceria existir mas redundancia estructural. A lo que respecta a ataques aleatorios
con sesgo a nodos periféricos (baja centralidad), estos ataques suelen tener menor impacto en ambas
configuraciones. La gran comunidad de Girvan—-Newman es mds robusta a ataques aleatorios porque
muchos nodos son hojas o tienen poca conectividad local. Por su parte, Louvain, al tener mds
comunidades pequefias, podria ver efectos localizados, pero no una desconexién masiva. Quedaria
preguntarnos si a pesar.

La aplicacién del algoritmo Louvain sobre la red de aeropuertos permitié detectar ocho comunida-
des distintas, representadas con colores tnicos en el grafo. Esta segmentacion revela agrupamientos
internos densamente conectados y con menor vinculacién entre si, una caracteristica tipica de redes
con estructura modular.

En el grafo visualizado, puede observarse como ciertas comunidades —como la naranja y la
verde— concentran una gran cantidad de nodos y presentan conexiones mas intensas al interior del
grupo. La representacion visual, al usar color y tamafio de nodo, facilita la identificacién de nodos
centrales en cada comunidad y permite distinguir regiones periféricas.

Esta representacion complementa el mapa geografico mostrado anteriormente, ya que permite
apreciar la estructura topoldgica de las comunidades independientemente de su localizacién espacial,
reafirmando la existencia de médulos coherentes dentro de la red.
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3.2.7. Comparacion de Comunidades de la red de Aeropuertos y Facebook

Cuadro 3: Comparativa entre algoritmos de deteccién de comunidades en la red Facebook

Métrica Girvan-Newman | Louvain
Numero de comunidades 9 16
Modularidad 0.7390 0.835
Tamafio max. comunidad 926 nodos 548 nodos
Tamafo min. comunidad 60 nodos 19 nodos
Tiempo de ejecucion 32 horas 30 minutos

Cuadro 4: Comparativa entre algoritmos de deteccién de comunidades en la red de Aeropuertos

Meétrica Girvan-Newman | Louvain
Numero de comunidades 169 8
Modularidad 0.2174 0.3479
Tamafio max. comunidad 785 nodos 432 nodos
Tamaio min. comunidad 1 nodo 4 nodos
Tiempo de ejecucion 10 horas 15 minutos

En el andlisis comparativo de redes, se observa que Facebook presenta una estructura con patrones
mds aleatorios, en contraste con la red de aeropuertos, cuyo disefio responde a una planificacién previa
e implica el desarrollo de una infraestructura fisica concreta. Esta diferencia marca una separacién
clara entre una red de origen orgédnico, como Facebook, y otra construida sobre criterios logisticos y
geograficos, como la de los aeropuertos.

Dentro de la red de aeropuertos, al examinar comunidades con pocos nodos —por ejemplo, grupos
formados por entre 1 y 4 nodos dentro del grafo— se identifican ciertos aeropuertos ubicados en
zonas periféricas que adquieren un rol destacado. A pesar de su baja conectividad, estos aeropuertos
actian como puntos de enlace entre nodos aislados y el interior de la ciudad, cumpliendo asi una
funcién de conectores criticos dentro de la red.

Este tipo de estructura podria tener implicancias importantes para estrategias basadas en la cu-
riosidad estructural, ya que estos aeropuertos periféricos —que a simple vista podrian parecer
irrelevantes— pueden en realidad representar vulnerabilidades anémalas. Su posicién intermedia y su
capacidad de conexién limitada los convierten en puntos potencialmente fragiles, cuya identificacién
resulta clave para comprender la dindmica de la red y anticipar fallos.
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3.3. Experimentos de robustez
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Figura 14: Resultados del experimento para redes de aeropuertos y Facebook

Contrariamente a lo que podiamos esperar dado nuestro analisis explotario preliminar, la estategia
de curiosidad no provee disrupciones a ninguna de las dos redes, ni siquiera a la de Aeropuertos. En la
estrategia de ataque de curiosidad, el tamafio relativo de la componente gigante resultante se observa
estable en ambas redes. Esto nos indica que durante ese recorrido iterativo no se dectect6 ninguna
anomalia disruptiva. Si bien cada red tiene un decaimiento de conectividad con particularidades,
con la estrategia Tradicional (azul), el componente gigante se reduce radpidamente en ambos casos:
basta eliminar unos cientos de nodos para desconectar gran parte de la red. Ambas redes terminan
siendo vulnerables a ataques dirigidos aunque en la red de Aeropuertos existe un decaimiento de la
red progresivo mientras que en Facebook esto se da de saltos. Esto es esperado dada la topologia
hub-dependiente y libre de escala de la red de Facebook la cudl termina siendo mds susceptible a
ataques dirgidos. Tal como remarcamos previamente, con la estrategia Curiosa (naranja), la red se
mantiene conectada casi completamente. Esto indica que eliminar nodos poco centrales no afecta la
conectividad estructural, por lo que amnas redes resultaron altamente robustas ante fallos aleatorios
sesgados hacia nodos marginales.
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0.40 — Tradicional
— Curiosa

0.20

Eficiencia
°
o
8
°
2
G

Eficiencia

0.10

—— Tradicional
0.00 0.00 Curiosa

o 200 400 600 800 1000 1200 1400 o 500 1000 1500 2000 2500 3000 3500 4000
Iteracién Iteracién

(a) Aeropuertos (b) Facebook

Figura 15: Resultados del experimento para redes de aeropuertos y Facebook

En refuerzo a lo descubierto al observar el tamafio relativo de la componente gigante, las medidas
de Eficiencias Global simplemente reflejan la misma realidad: ambas redes se mostraron resilientes a
tales ataques, no solo su eficiencia global no decay6 sino que se increment6 progresivamente.
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4. Conclusion

En el contexto de redes cada vez mds complejas y enriquecidas, y un creciente interés por explorar
estrategias alternativas para detectar riesgos sistémicos y vulnerabilidades no convencionales basadas
en curiosidad computacional, este informe contribuy6 a esclarecer la efectividad de dichas alternativas
de ataque en dos redes de topologias marcadamente contrastantes. En tanto nuestro andlisis explora-
torio preliminar nos sugirié que al menos una de las redes (Aeropuertos) podria ser mas vulnerable
a ataques atipicos dada su mayor heterogeniedad, menor clusterizacién y mayor conectividad, al
implementar ambas estrategias de ataque observamos que sistematicamente aquellas que priorizan
progresivamente nodos de mayor centralidad de grado son aquellas que terminan disrumpiendo la
red. Si bien si esperdbamos una mayor eficiencia general de la estrategia tradicional, la estrategia
curiosa tampoco resulté ser efectiva para revelar "vulnerabilidades ocultas"puesto que las caidas de
eficiencia y conectividad solo se presentaban en las tltimas iteraciones de la simulacién. En otras
palabras, para que la estrategia de curiosidad cause alguna disrupcion se debia iterar hasta borrar casi
todos los enlaces de los nodos. Esto nos indica, por un lado, que esos nodos omitidos al final eran, en
efecto, cruciales y por otro, que ningtin nodo "no evidente"terminé causando alguna disrupcion ines-
perada o anomala. Futuras investigaciones podrian contemplar otras medidas de centralidad de grado,
estrategias con una mayor complejidad para cada iteracion (contemplar grado e intermediacién en el
marco de ciclos), o incluso experimentar con distintos factores de peso para el sesgo de curiosidad.
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