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Abstract
El estudio de la resiliencia en redes complejas tradicionalmente se ha centrado en
analizar fallos en nodos altamente conectados, dejando de lado vulnerabilidades
potenciales en nodos estructuralmente menos relevantes. Este trabajo explora la
hipótesis de que ciertos nodos periféricos podrían desempeñar roles críticos no
evidentes en la robustez del sistema. Combinando herramientas de teoría de redes
con enfoques de curiosidad computacional —que emulan procesos del pensamiento
lateral humano—, se propone una metodología alternativa para identificar puntos
frágiles atípicos. Se analizan dos redes reales con topologías contrastantes: una red
social (Facebook) y una red de infraestructura (aeropuertos de EE. UU.), some-
tiéndolas a dos simulaciones de ataques, una dirigida y otra basada en caminatas
aleatorias sesgadas hacia nodos de baja centralidad. Los resultados revelan que si
bien las características topológicas exploradas sugerían que la red de aeropuertos
podría ser susceptible a ataques no convencionales, una estrategia de curiosidad de
caminata aleatoria sesgada hacía nodos de baja centralidad de grado no parecería
poder descubrir riesgos no triviales ni relevar anomalías. De hecho, nuestro experi-
mento sugiere que las estrategias convencionales poseen mayor eficacia tanto en
una red de mayor heterogeneidad y menor dependencia de hubs como aeropuertos
como en una red hub-dependiente como Facebook.

1. Introducción
El exponencial aumento de la complejidad de la interconexión entre sistemas en dominios como

las redes sociales y de transporte ha facilitado la disponibilidad y análisis de grandes volúmenes de
datos. Estas redes constituyen un insumo clave para la minería de datos en ciencia y tecnología, dado
su potencial para modelar fenómenos sociales, tecnológicos y económicos interdependientes. En este
contexto, el estudio de la resiliencia de sistemas interconectados cobra creciente relevancia: compren-
der cómo estas redes resisten perturbaciones es fundamental para anticipar colapsos sistémicos, ya
sea en redes sociales, infraestructuras críticas o sistemas ecológicos. Tradicionalmente, los estudios
de robustez se han centrado en ataques a nodos altamente conectados, asumiendo que son los puntos
más vulnerables. Sin embargo, esta aproximación puede pasar por alto configuraciones críticas no
evidentes, donde nodos aparentemente marginales podrían desencadenar disrupciones sistémicas.
Por tal razón, nos motiva identificar estas vulnerabilidades ocultas para diseñar infraestructuras más
resilientes, especialmente en contextos donde los ataques convencionales podrían omitir riesgos no
evidentes que terminen siendo críticos.

En los estudios clásicos de robustez de redes, se recurre habitualmente a simulaciones de ataques
aleatorios o dirigidos a nodos de alta centralidad (hubs), lo cual revela las vulnerabilidades más obvias,
pero descuida configuraciones atípicas que podrían desencadenar fallos inesperados, Freitas., et al [1].
Para superar estas limitaciones, han emergido enfoques de búsqueda creativa en redes sociales, como
Socialz [2], que utilizan algoritmos evolutivos guiados por novedad para simular comportamientos de
usuarios no convencionales y descubrir errores que escapan a las pruebas tradicionales, Zanartu., et al



[3]. De manera similar, en redes de transporte, herramientas de monitoreo dinámico de la centralidad
de intermediación permiten anticipar cuellos de botella antes de que se materialicen en situaciones
reales de congestión, Furno et al., [4]. Más aún, las heurísticas de curiosidad computacional, imple-
mentadas por ejemplo en AutoOD, exploran de forma no determinísticos patrones inusuales en datos
complejos, Li et al., [5], y marcos adversariales como VCAT incorporan recompensas por novedad
para revelar vectores de ataque inéditos en vehículos autónomos, Cai et al., [6].

Por ende, acá nos proponemos evaluar empíricamente la eficacia comparativa de dos estrategias
de ataque en redes con topologías contrastantes: (1) un método clásico que ataca primero los nodos
centrales y (2) una heurística de curiosidad computacional que sesga la búsqueda hacia nodos
periféricos y topológicamente atípicos. Para cada red, una subred de Facebook y la componente
gigante binarizada de una red global de conexiones aéreas, llevaremos a cabo dos simulaciones con
estrategias diferenciales (convencional vs. curiosa), midiendo para cada simulación, variaciones tanto
la conectividad global (tamaño relativo de la componente gigante) como en la eficiencia global. El
objetivo de estas simulaciones será identificar patrones diferenciales de fragilidad ante los dos tipos
de ataques.

Para facilitar la claridad de la exposición, el artículo se organiza en las siguientes secciones: (A)
Métodos – Describe en detalle las dos estrategias de ataque comparadas, el análisis exploratorio
preliminar a realizar sobre las redes analizadas (Facebook y aeropuertos) y las métricas de evalua-
ción empleadas. (B) Resultados y Discusión – Presenta los hallazgos principales, contrastando la
efectividad de ambos métodos para identificar vulnerabilidades, y analiza las implicaciones de estos
resultados en el contexto de redes con diferentes topologías. (C) Conclusiones – Sintetiza las contri-
buciones clave del estudio, reflexiona sobre sus limitaciones y propone futuras líneas de investigación
para extender este trabajo. El objetivo del presente informe es esclarecer si una estrategia de ataque
aleatoria con sesgo hacia nodos de baja de centralidad puede o no puede detectar vulnerabilidades
anomalas que no podrían ser detectadas por un ataque convencional como una estrategia dirigida
clásica.

2. Métodos
2.1. Diseño Experimental

Con el objetivo de discernir si vulnerabilidades no evidentes pueden ser reveladas mediante una
búsqueda atípica, el estudio compara dos estrategias de ataque:

1. Enfoque clásico: Eliminación progresiva borrando primero los enlaces de los nodos con
mayor centralidad de grado.

2. Heurística de curiosidad: Recorrido aleatorio con sesgo hacia nodos de bajo grado. El
sesgo aplicado utiliza una razón de probabilidad 1.0/0.1.

Razndeprobabilidad =
pmin

pmax
=

1,0

0,1
= 10

La misma se implementó en el siguiente código:
1 def estrategia_curiosa(G, centralidad_dict):
2 valores = list(centralidad_dict.items())
3 valores.sort(key=lambda x: x[1]) # orden ascendente
4 nodos = [x[0] for x in valores]
5 pesos = np.linspace(1.0, 0.1, len(nodos)) # sesgo hacia baja centralidad
6 pesos /= pesos.sum()
7 return random.choices(nodos, weights=pesos, k=len(nodos))

Bajo este sesgo, el nodo con menor centralidad tiene 10 veces más chances de ser elegido que el de
mayor centralidad. De todas las posibles medidas de centralidad, optamos por la centralidad de grado.
Creemos que esta métrica provee información crítica para nuestro informe puesto que nos revela
aquellas zonas típicamente priorizadas por estrategias tradicionales donde se concentran más nodos.
Futuras investigaciones podrían contemplantar un índice con distintas medidas de centralidad tal
como grado e intermediación, y explorar dichas estrategias en un más variado conjunto de topologías
(como experimentar con redes pesadas y direccionadas).
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2.2. Datasets y Preprocesamiento
Para aplicar tales estrategias, se seleccionaron redes representativas de dominios contrastantes

(comunicación y transporte) dado que presentan topologías diferentes en las cuáles podríamos esperar
dinámicas de fallo críticamente distintas.

Facebook: Este grafo representa círculos de amistad en la plataforma Facebook. Los datos fueron
recolectados mediante una encuesta anónima que capturó relaciones de amistad entre usuarios. Cada
nodo representa un perfil individual de usuario, y cada arista no dirigida indica la existencia de una
relación de amistad mutua entre dos usuarios. El grafo cuenta con 4039 nodos y 88.234 enlaces, lo
que refleja un nivel considerable de interconexión social. Se trata de una red no dirigida, no ponderada
y conexa, lo que implica que existe un camino entre cualquier par de nodos en el grafo.

Aeropuerto: Este grafo dirigido y ponderado representa rutas aéreas entre aeropuertos de Estados
Unidos durante el año 2010. Cada nodo corresponde a un aeropuerto, y cada arista dirigida representa
la existencia de vuelos programados desde un aeropuerto origen hacia un destino específico. El peso
asignado a cada arista indica la cantidad total de vuelos realizados en esa ruta durante el año. La red
contiene 1574 nodos y 28.236 enlaces dirigidos, y se caracteriza por ser disconexa, tanto en términos
de conectividad fuerte como de conectividad débil. Esto implica que no existe un camino (ni siquiera
ignorando la dirección de los enlaces) que conecte a todos los nodos entre sí.

Cuadro 1: Características de las redes analizadas
Propiedad Facebook Aeropuertos
Nodos 4,039 1,402 (componente gigante)
Aristas 88,234 17,013 (binarizada)
Tipo Social Infraestructura
Distribución de grado Libre de escala Ley de potencia truncada

Transformaciones aplicadas:
Aeropuertos: De manera tal que podamos realizar una comparación homogénea entre ambas
redes, se optó por realizar una binarización y uso de la componente gigante de la red de
Aeropuertos. Entendemos que de esta manera se sacrifica especificidad de dirección/peso,
pero al mismo tiempo así permitimos un análisis estructural puro. Cabe aclarar que se
eliminaron los pesos sin aplicar umbrales, conservando todas las conexiones y, por ende, la
densidad original del grafo.

2.3. Análisis Exploratorio Previo
Antes de implementar las estrategias de ataque, se llevó a cabo un análisis exploratorio estructural

con el fin de comprender mejor las propiedades topológicas de las redes originales, evaluar la
adecuación de prototipos teóricos como modelos de referencia y así preveer que podríamos esperar
encontrar al aplicar cada simulación.

1. Comparación topologica Para evaluar la robustez estructural y detectar vulnerabilidades
potenciales en las redes analizadas, se implementó una comparación sistemática entre
algunas propiedades topológicas de la red de Aeropuertos y la red social de Facebook. La
metodología combinó análisis visuales y métricas cuantitativas. Se calcularon y compararon
métricas topológicas que encontramos relevantes tal como coeficientes de clustering y grados
promedio puesto que nos ofrecen información sobre potenciales concentraciones de fallos
en las redes. Al analizar estos indicadores, buscamos identificar patrones diferenciales de
organización y resiliencia que nos permitan preveer que esperar al aplicar cada estrategía de
ataque.

2. Comparación de simulaciones de prototipos.
De manera tal que podamos evaluar como podrían adecuarse nuestros descubrimientos
de cada red a evaluar con prototipos generalizados de redes, realizamos simulaciones de
modelos.

Metodología implementada para realizar las simulaciones.
Parámetros de entrada. Antes de las simulaciones, se calcularon dos parámetros clave
a partir de cada red real:

• Número de nodos: se obtuvo directamente del grafo real.
• Grado medio: se utilizó como referencia para garantizar que las redes sintéticas

tuvieran una densidad de enlaces comparable.
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Además, se calculó un parámetro denominado mcero, necesario para el modelo
Barabási-Albert. Este parámetro define el número de enlaces que se añaden en ca-
da paso del modelo de crecimiento preferencial, permitiendo mantener la estructura de
red realista.
Modelos utilizados y simulaciones. Para cada grafo bajo estudio, se realizaron simula-
ciones con los tres modelos de redes aleatorias:
Modelo Barabási-Albert (BA). Este modelo genera redes de crecimiento con conexión
preferencial. Para asemejarse a la red real:

• Se utilizó el mismo número de nodos que el grafo real.
• Se calculó el parámetro mcero a partir del grado medio real, de modo que cada

nuevo nodo agregado tuviera aproximadamente la misma cantidad de enlaces que
un nodo promedio.

Esto permitió que las redes generadas tuvieran un grado medio y una densidad de
enlaces similares a las reales, asegurando comparaciones significativas.
Modelo Erdős-Rényi (ER). Este modelo crea redes aleatorias donde cada par de nodos
se conecta con igual probabilidad. Para replicar la densidad de enlaces:

• Se fijó el mismo número de nodos que el grafo real.
• Se ajustó el número de aristas al valor observado en la red real.

De esta manera, las redes ER simuladas conservaron la misma densidad promedio de
conexiones que la red real, facilitando la comparación de métricas como el clustering y
la distancia promedio.
Modelo Watts-Strogatz (WS). Este modelo genera redes de “pequeño mundo”, interme-
dias entre redes regulares y aleatorias. Para asemejarse a la red real:

• Se utilizó el mismo número de nodos.
• Se determinó el número de vecinos iniciales de cada nodo a partir del grado medio

real, garantizando una conectividad local similar.
• Se usó una probabilidad de reconexión baja (0.03) para introducir aleatoriedad y

mantener la estructura local.
Esto permitió que las redes simuladas conservaran características similares a la red real
tanto en conectividad local como en estructura global.
Con estos ajustes, cada modelo generó redes sintéticas que imitaban las propiedades
estructurales básicas del grafo real de aeropuertos. Así, se aseguraron comparaciones vá-
lidas y relevantes para evaluar la idoneidad de los modelos teóricos en la representación
de redes reales.
Ejecución de las simulaciones de prototipos. Para cada modelo, se realizaron 1000
simulaciones independientes para garantizar la robustez estadística de los resultados.
Estas simulaciones se implementaron en paralelo mediante la librería joblib, optimi-
zando el uso de múltiples núcleos de procesamiento. Los resultados se guardaron en
archivos utilizando pickle, y se implementó un mecanismo de guardado incremental
por bloques para evitar la pérdida de datos en caso de interrupciones.

3. Análisis de centralidad.
Se calcularon métricas de centralidad de grado para todos los nodos en ambas redes, como
paso necesario para implementar ambas estrategias de ataque. Este análisis también sirvió
como diagnóstico de la jerarquía estructural implícita en la red, y permitió anticipar posibles
puntos de falla clave. Como complemento de análisis topológico, cálculamos algunas
métricas de centralidad adicionales que, si bien no se implementan en las simulaciones de
ataque, su comparación nos brindan información adicional sobre las potencialidades de falla
de cada red mientras obtenemos de esto una caracterización más detallada de dichas redes.

4. Detección de comunidades.
Con el objetivo de evaluar la cohesión estructural de las redes y preveer posibles puntos
de fragmentación, se aplicaron algoritmos de detección de comunidades. Por un lado, se
utilizó el algoritmo de Louvain para identificar particiones óptimas según modularidad.
Se reportaron los valores de modularidad obtenidos y se visualizaron las comunidades
detectadas. Por otro lado, se replicó el análisis con el algoritmo de Girvan-Newman para
comparar la estabilidad y consistencia de la partición obtenida. Realizamos este análisis en
búsqueda de evidencia sobre la robustez de estructuras mesoscópicas (comunidades) ante
perturbaciones locales.
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Dado que el algoritmo de Girvan–Newman tiene un alto costo computacional y no escala
bien para grafos grandes, se adoptaron varias medidas prácticas para hacerlo ejecutable
en un entorno real. El experimento se realizó en un servidor Amazon EC2, configurado
con un entorno virtual que garantizó la disponibilidad de dependencias y el aislamiento de
ejecución. Las redes bajo estudio fueron cargadas desde archivos de texto y procesadas con la
librería networkx. El script fue ejecutado en segundo plano utilizando nohup, permitiendo
continuar el análisis incluso si se cerraba la sesión. En cada iteración del algoritmo se calcu-
laron dos métricas clave: el número de comunidades generadas y el valor de modularidad
correspondiente. Estos datos se registraron en un archivo CSV, lo que permitió realizar un
seguimiento completo de la evolución del proceso. Además, la mejor partición encontrada
fue almacenada automáticamente en formato .pkl, conservando aquella con la modularidad
máxima alcanzada hasta el momento. Estas decisiones permitieron ejecutar el análisis de co-
munidades con Girvan–Newman de forma controlada y reproducible, priorizando resultados
útiles sin agotar los recursos disponibles.
El proceso de maximización de la modularidad mediante el algoritmo de Girvan–Newman
tuvo una duración total de 10 horas para la red de Aeropuertos y de 32 horas para la red
de Facebook. La modularidad máxima se alcanzó en la iteración 168 para Aeropuertos y
en la iteración 8 para Facebook. Ver imagen más abajo.

2.4. Métricas de Evaluación
Las métricas se eligieron para capturar tanto la resiliencia global como patrones locales de fragilidad

(Tabla 2).

Cuadro 2: Métricas de robustez y su relevancia
Métrica Justificación
Tamaño relativo de la componente gigante (Ng/N) Efecto en la conectividad global
Eficiencia global Capacidad de comunicación en redes parcialmente conec-

tadas

A continuación detallaremos los resultados de este artículo, comenzando por el análisis explora-
torio preliminar de cada red y finalizando con los hallazgos encontrados luego de implementar las
estrategias de ataque evaluadas.
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3. Resultados y discusión
3.1. Análisis Exploratorio preliminar
3.1.1. Comparación de la red de Aeropuertos y red social Facebook

Para identificar vulnerabilidades no evidentes y evaluar rigurosamente la robustez de nuestras
dos redes bajo análisis, como primer paso resultó fundamental la caracterización precisa de las
propiedades topológicas mediante análisis comparativos con modelos teóricos.

3.1.2. Medidas topológicas comparativas

(a) Distribución de coeficientes de clustering

Figura 1: Distribución de Coeficientes de Clustering.

Cuadro comparativa de métricas

Figura 2: Comparación de métricas de las redes de Aeropuertos(Componente Gigante Binarizada) y
Facebook.

Nos motivó averiguar el coeficiente de clustering y su distribución puesto a que la conectividad que
tienen los vecinos de los nodos nos puede dar información adicional sobre la ubicación de potenciales
centros de falla de las redes. Tal como se observa en los datos provistos por la Figura 1 y la Figura
2, la similitud en clustering pero divergencia en grado promedio sugiere que las redes sociales y
de infraestructura tienen mecanismos distintos de resiliencia: mientras Facebook depende de hubs,
los aeropuertos parecerían redistribuir críticidad en nodos intermedios (no necesariamente los más
conectados).
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3.1.3. Modelos de Redes — Características Generales
Ahora bien, ¿Qué tan bien capturan los prototipos de redes las caracteristicas topológicas que

sugieren estos contrastantes mecanismos de resiliencia? Para responder tal pregunta, comparamos la
distribución de grado de los datasets con la de una instancia de los prototipos:

(a) Aeropuertos (log-log).

(b) Facebook (log-log).

Figura 3: Comparación de las distribuciones de grados (log-log) para Aeropuertos y Facebook vs
modelos de téoricos.

Distribución de Grados

Figura 4: Métricas topológicas para las redes de Aeropuertos y Facebook, y sus modelos de referencia

Cuadro resumen de métricas topológicas comparativas

Observaciones Tal como observamos en la Figura 3 y la Figura 4, los modelos clásicos (ER, BA)
no parecieran capturar la importancia estructural de nodos periféricos con alto clustering. Por su parte,
la cercanía entre Watts-Strogatz y las redes reales sugiere que la resiliencia depende de estructuras
locales (triángulos sociales) más que de hubs centrales. La brecha entre el clustering real (0.5575) y
el predicho por Barabási-Albert (0.0529) en aeropuertos evidencia que los modelos basados en hubs
subestiman la importancia de nodos periféricos con alta cohesión local.
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3.1.4. Comparación de distribución simulada de métricas topológicas de los modelos
prototipos de Erdős–Rényi, Watts–Strogatz y Barabási–Albert

¿Qué pasa cuando realizamos simulaciones sobre tales prototipos?

(a) Aeropuertos.

(b) Facebook.

Figura 5: Distribución simulada de métricas topológicas con 1000 repeticiones para Aeropuertos (a)
y Facebook (b).
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Resultados observados
Aeropuertos - Prototipos de Redes Los resultados del análisis de simulaciones para cada uno

de los modelos de red (Barabási-Albert, Erdős-Rényi y Watts-Strogatz), calculando el promedio y
la desviación estándar de métricas clave como el coeficiente de clustering y la distancia promedio.
En todos los casos, los valores observados en la red real se ubicaron fuera del rango típico de los
modelos simulados, especialmente en lo que respecta al clustering.

Este resultado sugiere que la estructura de la red de aeropuertos no es producto del azar, sino
que responde a patrones específicos de organización que los modelos aleatorios no logran capturar
adecuadamente. No obstante, es importante destacar que el modelo de Erdős-Rényi predice con
bastante precisión el grado promedio observado en ambas redes reales.

Respecto al coeficiente de clustering, los modelos Barabási-Albert y Erdős-Rényi presentan valores
promedio ± 2 desviaciones estándar que no alcanzan los niveles observados en la red real, mientras
que el modelo de Watts-Strogatz es el que mejor aproxima este indicador. En cuanto a la distancia
promedio, el modelo Watts-Strogatz tiende a sobreestimarla en aproximadamente 0,8 unidades,
mientras que los modelos Barabási-Albert y Erdős-Rényi la subestiman en alrededor de 0,5 unidades
siendo estos las mejores aproximaciones
Facebook - Prototipos de Redes La red real de Facebook presenta una estructura compleja que
no logra ser replicada por completo mediante los modelos prototipo tradicionales utilizados en este
análisis. Al comparar sus principales métricas con las obtenidas a partir de 1000 simulaciones de los
modelos de Erdős–Rényi, Watts–Strogatz y Barabási–Albert, se observan diferencias importantes
que permiten evaluar las limitaciones de cada uno.

En primer lugar, el modelo de Barabási–Albert es el único que consigue reproducir con precisión
el grado promedio de la red real de Facebook. Esto se debe a que dicho modelo se basa en un
mecanismo de crecimiento por adjunción preferencial, lo que genera distribuciones de grado similares
a las observadas en redes reales, especialmente en aquellas con alta heterogeneidad estructural.
El modelo de Erdős–Rényi también alcanza un valor cercano, aunque esto se explica por una
parametrización intencional que fuerza la coincidencia del grado medio. Por otro lado, el modelo de
Watts–Strogatz subestima levemente esta métrica, lo que refleja su incapacidad para generar nodos
altamente conectados.

Sin embargo, cuando se analiza el clustering promedio, que refleja la tendencia de los nodos a
formar grupos cerrados o comunidades locales, se evidencian limitaciones importantes. La red de
Facebook presenta un alto nivel de agrupamiento, propio de las redes sociales, que no es capturado
ni por el modelo de Erdős–Rényi ni por el de Barabási–Albert. Ambos generan estructuras con un
clustering promedio significativamente más bajo. En cambio, el modelo de Watts–Strogatz ofrece
una mejor aproximación, aunque aún por debajo del valor observado en la red real. Este resultado
pone de manifiesto la dificultad de los modelos clásicos para reproducir la cohesión local típica de
redes sociales complejas.

Respecto de la distancia promedio —entendida como la longitud media de los caminos más
cortos entre pares de nodos—, la red real exhibe una estructura eficiente, característica de las
llamadas redes “small-world”. El modelo de Watts–Strogatz logra aproximarse razonablemente a este
comportamiento, mientras que el modelo de Erdős–Rényi presenta distancias demasiado reducidas
y el de Barabási–Albert, distancias excesivamente bajas. Estos resultados muestran que, aunque el
modelo WS no replica fielmente todas las métricas, sí consigue reflejar de forma más equilibrada la
eficiencia estructural observada en la red.

En conjunto, los resultados sugieren que ningún modelo logra reproducir de manera integral las
propiedades clave de la red de Facebook. Mientras que Barabási–Albert reproduce con precisión el
grado promedio, falla en capturar la cohesión local. Watts–Strogatz, en cambio, se aproxima mejor
al clustering y a la distancia promedio, pero subestima el grado. Esto evidencia las limitaciones de
los modelos prototipo clásicos para representar adecuadamente la complejidad estructural de redes
sociales reales, y refuerza la necesidad de explorar enfoques más flexibles o híbridos que integren
múltiples mecanismos de formación de enlaces.
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3.2. Centralidades
En el marco de la hipótesis planteada, resulta relevante primero clasificar los nodos según alguna

medida de centralidad que nos permita, por un lado caracterizar a las redes, y por otro, ejecutar
nuestras dos estrategias de ataque. Con este objetivo, cuantificamos y caracterizamos estos nodos para
comprender su relevancia dentro de la estructura de la red. Para ejecutar nuestras estrategias de ataque,
consideramos que utilizar la centralidad de grado como criterio para definir y medir la importancia
de los hubs. De manera adicional, calculamos otros tipos de centralidades (como intermediación)
con el objetivo de caracterizar a las redes previo a la ejecución de las simulaciones. A fin de facilitar
el análisis de tales caracterizaciones, se construyeron los gráficos 6a, 6b, 8b y 8a de las redes de
Aeropuertos y Facebook.
3.2.1. Comparación de Centralidad de Intermediación y Grado - Facebook

(a) Centralidad de Intermediación - Facebook (b) Centralidad de Grado - Facebook

Figura 6: Comparación Centralidad de Grado entre (a) Aeropuerto y (b) Facebook.

Como puede observarse en las figuras 6a y 6b, la estructura de la red analizada presenta comunida-
des más compactas y claramente delimitadas, lo que sugiere una organización interna caracterizada
por altos niveles de cohesión entre los nodos de cada grupo. Asimismo, se evidencia un patrón estruc-
tural variable y de carácter aleatorio, lo cual indica la ausencia de una distribución fija o predecible
en las conexiones entre los elementos de la red.

En la figura correspondiente a la centralidad de grado, se identifican los hubs o influencers, es decir,
aquellos nodos con un alto número de conexiones directas. Por otro lado, en la figura de centralidad
de intermediación se destacan aquellos nodos que, aunque no necesariamente sean influencers,
desempeñan un papel crucial en el flujo de información al actuar como puentes entre distintas partes
de la red, facilitando su propagación a través de toda la estructura.

(a) Distribución de centralidad de intermediación
del grafo de Facebook

(b) Distribución de centralidad de Grado del grafo
de Facebook

Figura 7: Distribución de centralidad de intermediación y Grado

Otro aspecto relevante que puede observarse las figuras 7a y 7b es la presencia de hubs, representa-
dos principalmente por los influencers, quienes actúan como nodos centrales con un alto grado de
conexión y desempeñan un papel clave en la difusión de información dentro de la red.
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3.2.2. Comparación de Centralidad de Intermediación y Grado - Aeropuertos

(a) Centralidad de Intermediación (b) Centralidad de Grado

Figura 8: Comparación entre Centralidad de Intermediación (a) y Centralidad de Grado (b) en la red
de aeropuertos.

(a) Distribución de centralidad de intermediación (b) Distribución de centralidad de Grado

Figura 9: Distribución de centralidad de intermediación (a) y Distribución de centralidad de Grado (b)

En la visualización de la centralidad de grado de la red de aeropuertos, se observa que algunos
nodos con alta centralidad, coloreados en verde, se destacan por ser ciertos aeropuertos ubicados en
zonas periféricas, como los que conectan con el interior de una ciudad. Esta visualización permite
identificar rápidamente su rol estratégico como nodos de escala obligada para acceder a regiones con
menor conectividad directa. Dichos aeropuertos actúan como puntos clave de enlace, a pesar de estar
geográficamente aislados.
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3.2.3. Correlación lineal entre centralidades

(a) Heatmap de Correlación entre centralidades - Fa-
cebook

(b) Heatmap de Correlación entre centralidades - Ae-
ropuertos

Figura 10: Grado de Correlación lineal entre Centralidades

Del análisis del grado de correlación lineal entre las centralidades de las redes bajo estudio, que se
presentan en las figuras 10a y 10b, se observa que los aeropuertos con mayor número de conexiones
directas (grado) también tienden a ser globalmente relevantes según las medidas de Eigenvector y
PageRank, con correlaciones de 0.96 y 0.95, respectivamente. Esto indica que los hubs más grandes
no solo concentran rutas, sino que están conectados con otros aeropuertos importantes dentro de la red.
Por otro lado, la intermediación exhibe una dinámica distinta: sus correlaciones más bajas con Grado
(0.51), Eigenvector (0.35) y PageRank (0.67) indican que resalta aeropuertos que, aunque menos
conectados, desempeñan un rol estratégico como puentes entre regiones o zonas periféricas. Estos
resultados parecen mostrar una estructura dual en la red de aeropuertos, donde coexisten grandes
centros de tráfico con nodos clave que garantizan la conectividad entre distintas partes del sistema.

En la red de Facebook, las centralidades muestran correlaciones lineales en su mayoría moderadas o
bajas. Grado se relaciona con PageRank (0.67) y Eigenvector (0.57), pero menos con Intermediación
(0.45) y Cercanía (0.27). Intermediación tiene una alta correlación solo con PageRank (0.77), y
Eigenvector apenas se relaciona con otras medidas (por ejemplo, –0.08 con Cercanía y 0.02 con Inter-
mediación). Este patrón indica que la red no concentra su estructura en pocos nodos dominantes, sino
que diferentes actores cumplen roles distintos: conectividad, influencia estructural o intermediación,
reflejando una red más distribuida y funcionalmente diversa.
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3.2.4. Comunidades.
Los gráficos en las figuras 11b y 11a muestran la evolución de la modularidad a lo largo de

las iteraciones para ambas redes durante la ejecución del algoritmo. Realizamos esto con el fin
de encontrar el número óptimo de comunidades con el algoritmo de Girvan-Newman, el cual se
obtiene del máximo de modularidad en proceso de iteraciones. En base a los resultados realizamos
las visualizaciones subsiguientes.

(a) Facebook - Modularidad vs Iteraciones (b) Aeropuertos - Modularidad vs Iteraciones

Figura 11: Modularidad vs Iteraciones para las redes de Facebook y Aeropuertos

3.2.5. Comunidades detectadas para la red social Facebook por los métodos de Louvain y
Girvan-Newman

(a) Facebook - Comunidades por método de Girvan-
Newman (b) Facebook - Comunidades por método de Louvain

Figura 12: Comunidades detectadas en la red de Facebook utilizando los métodos de Girvan-Newman
y Louvain

Tal como podríamos esperar en una red social, ambos métodos detectan comunidades bastante
densas y separadas entre sí. Sin embargo: En Girvan-Newman, observamos menos comunidades
(9) y más claramente separadas.En Louvain, hay una mayor cantidad de comunidades (15), algunas
más pequeñas o subdivisiones más finas. Esto sugiere una estructura modular jerárquica, donde
ciertas regiones están muy densamente conectadas internamente pero débilmente conectadas con el
resto de la red. Los pocos nodos que conectan distintas comunidades (puentes entre clusters) juegan
un rol clave en la conectividad global. En el método Girvan-Newman, estas conexiones son más
visibles debido a cómo elimina aristas de mayor centralidad. Podríamos esperar que si se atacan
específicamente estos nodos puente, se pueda fragmentar la red rápidamente, aunque estos nodos no
necesariamente tengan el mayor grado. Esto tiene implicancias para nuestra estrategia de çuriosidad",
pues podríamos encontrar en tales nodos (posiblemente priorizados por el sesgo curioso), alguna
vulnerabilidad de bajo grado que termine causando una disrupción sistemica. Ahora bien, dicha
estrategia, si bien podría proveernos de información útil en torno a la detección de anomalias, no
esperamos que sea más efectiva que atacar nodos de alta centralidad de grado. En el dataset de
Facebook, como hay hubs conectando muchas comunidades, removerlos puede causar disrupciones
sistémicas (desconectar grandes partes de la red).
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3.2.6. Comunidades detectadas para la red de Aeropuertos por los métodos de Louvain y
Girvan-Newman

(a) Girvan-Newman (b) Louvain

Figura 13: Comunidades detectadas en la red de aeropuertos utilizando los métodos de Girvan-
Newman y Louvain.

Girvan–Newman sugiere una red muy vulnerable a estrategías dirigidas dado a que pocos nodos
conectan grandes sectores de la red (centralización) por lo que eliminar un hub podría fragmentar
la red fuertemente. Ahora bien, Louvain, al identificar más comunidades pequeñas, reduce esta
vulnerabilidad. Parecería existir más redundancia estructural. A lo que respecta a ataques aleatorios
con sesgo a nodos periféricos (baja centralidad), estos ataques suelen tener menor impacto en ambas
configuraciones. La gran comunidad de Girvan–Newman es más robusta a ataques aleatorios porque
muchos nodos son hojas o tienen poca conectividad local. Por su parte, Louvain, al tener más
comunidades pequeñas, podría ver efectos localizados, pero no una desconexión masiva. Quedaría
preguntarnos si a pesar.

La aplicación del algoritmo Louvain sobre la red de aeropuertos permitió detectar ocho comunida-
des distintas, representadas con colores únicos en el grafo. Esta segmentación revela agrupamientos
internos densamente conectados y con menor vinculación entre sí, una característica típica de redes
con estructura modular.

En el grafo visualizado, puede observarse cómo ciertas comunidades —como la naranja y la
verde— concentran una gran cantidad de nodos y presentan conexiones más intensas al interior del
grupo. La representación visual, al usar color y tamaño de nodo, facilita la identificación de nodos
centrales en cada comunidad y permite distinguir regiones periféricas.

Esta representación complementa el mapa geográfico mostrado anteriormente, ya que permite
apreciar la estructura topológica de las comunidades independientemente de su localización espacial,
reafirmando la existencia de módulos coherentes dentro de la red.
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3.2.7. Comparación de Comunidades de la red de Aeropuertos y Facebook

Cuadro 3: Comparativa entre algoritmos de detección de comunidades en la red Facebook
Métrica Girvan–Newman Louvain
Número de comunidades 9 16
Modularidad 0.7390 0.835
Tamaño máx. comunidad 926 nodos 548 nodos
Tamaño mín. comunidad 60 nodos 19 nodos
Tiempo de ejecución 32 horas 30 minutos

Cuadro 4: Comparativa entre algoritmos de detección de comunidades en la red de Aeropuertos
Métrica Girvan–Newman Louvain
Número de comunidades 169 8
Modularidad 0.2174 0.3479
Tamaño máx. comunidad 785 nodos 432 nodos
Tamaño mín. comunidad 1 nodo 4 nodos
Tiempo de ejecución 10 horas 15 minutos

En el análisis comparativo de redes, se observa que Facebook presenta una estructura con patrones
más aleatorios, en contraste con la red de aeropuertos, cuyo diseño responde a una planificación previa
e implica el desarrollo de una infraestructura física concreta. Esta diferencia marca una separación
clara entre una red de origen orgánico, como Facebook, y otra construida sobre criterios logísticos y
geográficos, como la de los aeropuertos.

Dentro de la red de aeropuertos, al examinar comunidades con pocos nodos —por ejemplo, grupos
formados por entre 1 y 4 nodos dentro del grafo— se identifican ciertos aeropuertos ubicados en
zonas periféricas que adquieren un rol destacado. A pesar de su baja conectividad, estos aeropuertos
actúan como puntos de enlace entre nodos aislados y el interior de la ciudad, cumpliendo así una
función de conectores críticos dentro de la red.

Este tipo de estructura podría tener implicancias importantes para estrategias basadas en la cu-
riosidad estructural, ya que estos aeropuertos periféricos —que a simple vista podrían parecer
irrelevantes— pueden en realidad representar vulnerabilidades anómalas. Su posición intermedia y su
capacidad de conexión limitada los convierten en puntos potencialmente frágiles, cuya identificación
resulta clave para comprender la dinámica de la red y anticipar fallos.
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3.3. Experimentos de robustez

(a) Aeropuertos (b) Facebook

Figura 14: Resultados del experimento para redes de aeropuertos y Facebook

Contrariamente a lo que podiamos esperar dado nuestro analisis explotario preliminar, la estategia
de curiosidad no provee disrupciones a ninguna de las dos redes, ni siquiera a la de Aeropuertos. En la
estrategia de ataque de curiosidad, el tamaño relativo de la componente gigante resultante se observa
estable en ambas redes. Esto nos indica que durante ese recorrido iterativo no se dectectó ninguna
anomalía disruptiva. Si bien cada red tiene un decaimiento de conectividad con particularidades,
con la estrategia Tradicional (azul), el componente gigante se reduce rápidamente en ambos casos:
basta eliminar unos cientos de nodos para desconectar gran parte de la red. Ambas redes terminan
siendo vulnerables a ataques dirigidos aunque en la red de Aeropuertos existe un decaimiento de la
red progresivo mientras que en Facebook esto se da de saltos. Esto es esperado dada la topología
hub-dependiente y libre de escala de la red de Facebook la cuál termina siendo más susceptible a
ataques dirgidos. Tal como remarcamos previamente, con la estrategia Curiosa (naranja), la red se
mantiene conectada casi completamente. Esto indica que eliminar nodos poco centrales no afecta la
conectividad estructural, por lo que amnas redes resultaron altamente robustas ante fallos aleatorios
sesgados hacía nodos marginales.

(a) Aeropuertos (b) Facebook

Figura 15: Resultados del experimento para redes de aeropuertos y Facebook

En refuerzo a lo descubierto al observar el tamaño relativo de la componente gigante, las medidas
de Eficiencias Global simplemente reflejan la misma realidad: ambas redes se mostraron resilientes a
tales ataques, no solo su eficiencia global no decayó sino que se incrementó progresivamente.
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4. Conclusión
En el contexto de redes cada vez más complejas y enriquecidas, y un creciente interés por explorar

estrategias alternativas para detectar riesgos sistémicos y vulnerabilidades no convencionales basadas
en curiosidad computacional, este informe contribuyó a esclarecer la efectividad de dichas alternativas
de ataque en dos redes de topologías marcadamente contrastantes. En tanto nuestro análisis explora-
torio preliminar nos sugirió que al menos una de las redes (Aeropuertos) podría ser más vulnerable
a ataques atípicos dada su mayor heterogeniedad, menor clusterización y mayor conectividad, al
implementar ambas estrategias de ataque observamos que sistemáticamente aquellas que priorizan
progresivamente nodos de mayor centralidad de grado son aquellas que terminan disrumpiendo la
red. Si bien si esperábamos una mayor eficiencia general de la estrategia tradicional, la estrategia
curiosa tampoco resultó ser efectiva para revelar "vulnerabilidades ocultas"puesto que las caídas de
eficiencia y conectividad solo se presentaban en las últimas iteraciones de la simulación. En otras
palabras, para que la estrategia de curiosidad cause alguna disrupción se debía iterar hasta borrar casi
todos los enlaces de los nodos. Esto nos indica, por un lado, que esos nodos omitidos al final eran, en
efecto, cruciales y por otro, que ningún nodo "no evidente"terminó causando alguna disrupción ines-
perada o anomala. Futuras investigaciones podrían contemplar otras medidas de centralidad de grado,
estrategias con una mayor complejidad para cada iteración (contemplar grado e intermediación en el
marco de ciclos), o incluso experimentar con distintos factores de peso para el sesgo de curiosidad.
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