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Abstract
La creciente disponibilidad de imágenes generadas mediante inteligencia artificial
(IA) plantea nuevos desafíos en la detección de fraudes digitales, auditoría visual
y verificación de autenticidad. Este trabajo evalúa la capacidad de separación no
supervisada de algoritmos de clustering aplicados a vectores de atributos visua-
les para distinguir entre imágenes naturales y aquellas manipuladas o generadas
artificialmente. Como antecedente, se retoman enfoques previos en detección de
anomalías mediante clustering. Se utiliza el modelo VGG16 como extractor de
características mediante transfer learning sobre el conjunto Natural Images, que
incluye ocho clases visuales. Primero se analizó la separabilidad de las etiquetas
reales sobre el conjunto de datos original probando K-Means, DBSCAN y Cluste-
ring Jerárquico Aglomerativo y luego utilizamos el Clustering Jerárquico (el que
encontramos más apropiado al dataset) aplicado a una versión “inoculada” con
imágenes falsas generadas por IA (IFGIA), con modificaciones sutiles y grotescas.
Los resultados muestran que el algoritmo con anomálias sigue separando coheren-
temente las etiquetas reales, pero existen limitaciones de diferenciación cuando las
anomálias son más sútiles ya que estas se agrupan en los mismos clusters que las
reales mientras que anomálias más grotescas se aglutinan en diferentes clusters
distribuidos.

1. Introducción
El avance de los modelos generativos ha multiplicado la disponibilidad de contenidos visuales

sintéticos, desde imágenes hiperrealistas creadas con inteligencia artificial hasta memes, deepfakes y
artefactos visuales grotescos como los denominados "brainrots". Esta proliferación plantea desafíos
importantes para la seguridad informática, la auditoría de contenidos, el control de calidad en
flujos digitales y la confianza en los datos. En paralelo, la detección de anomalías sigue siendo
un problema clave en contextos críticos como el control industrial o el monitoreo automatizado,
donde distinguir entre contenidos genuinos y sintéticos es cada vez más relevante. Por un lado,
la detección de anomalías visuales tiene un papel clave en aplicaciones críticas como el control
industrial, donde identificar defectos o patrones inusuales de forma automática puede prevenir fallos
o pérdidas. Por otro, el uso creciente de imágenes sintéticas generadas por IA —como deepfakes,
memes manipulados, bran rots, entre otros— plantea desafíos importantes en cuanto a la veracidad,
auditoría, seguridad y calidad de los datos visuales. En este contexto, se vuelve necesario desarrollar
herramientas capaces de distinguir de forma confiable imágenes reales de imágenes sintéticas o
alteradas.

La detección de anomalías visuales ha sido abordada desde distintos enfoques dentro del campo
del aprendizaje profundo, especialmente en contextos industriales y en el análisis de contenidos
generados artificialmente. Entre los trabajos más destacados se encuentran los métodos que combinan
autoencoders con aprendizaje por transferencia (transfer learning), así como aquellos que aplican
arquitecturas Transformer para la detección no supervisada. Más recientemente, han comenzado a



emerger estudios centrados específicamente en los riesgos asociados a los contenidos generados por
inteligencia artificial, conocidos como FAIGC (Fake Artificial Intelligence Generated Content). A
continuación, se describen cuatro contribuciones clave en la literatura que sirven como base para este
trabajo. Uno de los enfoques más relevantes en detección semi-supervisada es el propuesto por Saeedi
y Giusti (2021), quienes desarrollan un método basado en autoencoders convolucionales entrenados
únicamente con imágenes normales, y complementado con un extractor de características previamente
entrenado. A partir de esta representación, entrenan un clasificador de una sola clase para detectar
anomalías. Este enfoque es particularmente útil cuando no se dispone de ejemplos etiquetados de
imágenes anómalas, y resulta aplicable tanto a imágenes reales con defectos sutiles como a imágenes
sintéticas que alteran ligeramente la estructura de clases visuales conocidas. Su trabajo aporta una
estrategia robusta para la construcción de mapas de anomalía sin supervisión directa sobre las clases
anómalas, lo cual se alinea con la motivación de este estudio.

Por otro lado, Yang y Guo (2022) presentan un método completamente no supervisado para
la detección de anomalías en imágenes industriales, utilizando una arquitectura basada en Vision
Transformers (ViT). Su propuesta aprovecha la capacidad de los Transformers para capturar relaciones
globales entre bloques de imagen, superando las limitaciones de los autoencoders convolucionales
tradicionales, que tienden a centrarse en patrones locales. Además, incorporan un módulo de memoria
y mecanismos de atención coordinada para reforzar la diferenciación entre muestras normales y
anómalas. Este trabajo resulta especialmente relevante como antecedente técnico para explorar el uso
de transfer learning en combinación con métodos de agrupamiento, como se propone en la presente
investigación. Además, el relevamiento realizado por Yu et al. (2024) ofrece una visión general
integral sobre el fenómeno emergente de los contenidos falsos generados por IA (FAIGC). A través
de una clasificación sistemática de métodos de generación, modalidades implicadas (texto, imagen,
video, voz) y estrategias de detección, el trabajo establece un marco conceptual para comprender
los riesgos asociados a la proliferación de este tipo de contenidos. Asimismo, destaca los desafíos
específicos que plantea la detección de imágenes sintéticas altamente realistas en contextos como
redes sociales, periodismo y ciberseguridad. Este artículo justifica la necesidad de desarrollar enfoques
que, como el aquí propuesto, puedan diferenciar de forma no supervisada entre imágenes genuinas
y aquellas alteradas o generadas por modelos generativos avanzados. Finalmente, la evaluación
comparativa realizada por Sánchez Vinces et al. (2025) aporta una perspectiva valiosa sobre los
métodos de detección de anomalías basados en clustering, un enfoque tradicional que ha sido poco
explorado en los últimos años frente al auge de los métodos basados en aprendizaje profundo. Su
estudio demuestra que, cuando se aplican correctamente, las técnicas de agrupamiento como KMeans–
pueden igualar o incluso superar a métodos más sofisticados en términos de eficiencia, calidad de
resultados y escalabilidad. Además, destacan su bajo costo computacional y mayor interpretabilidad,
cualidades especialmente relevantes en contextos de detección no supervisada. Esta línea de trabajo
apoya la viabilidad del enfoque que se explora en esta investigación: utilizar algoritmos de clustering
aplicados a características visuales extraídas por modelos previamente entrenados para distinguir
entre imágenes reales y generadas. En conjunto, estos antecedentes demuestran la evolución de
la investigación en detección de anomalías visuales, desde entornos industriales controlados hasta
escenarios abiertos con presencia de contenido sintético. También evidencian la pertinencia de aplicar
técnicas de clustering no supervisado sobre atributos visuales extraídos mediante transfer learning,
como una vía prometedora para enfrentar los desafíos actuales en verificación de autenticidad de
imágenes.

Pregunta de investigación. ¿Es posible identificar, sin supervisión ni etiquetas, imágenes sintéticas
generadas mediante inteligencia artificial como outliers visuales, utilizando clustering jerárquico
sobre vectores de características extraídas con VGG16, y lograr su separación estructural respecto a
las imágenes naturales, especialmente en presencia de alteraciones visuales evidentes?

Hipótesis. Las imágenes sintéticas generadas mediante inteligencia artificial, especialmente aque-
llas con alteraciones visuales grotescas o incongruentes con las clases naturales, se comportan como
outliers dentro del espacio de características extraído con VGG16. En consecuencia, pueden ser
detectadas como anomalías y agrupadas en clústeres diferenciables mediante clustering jerárquico
no supervisado, sin necesidad de etiquetas externas. Se espera que la capacidad de separación sea
más efectiva ante manipulaciones evidentes, y limitada ante modificaciones sutiles.
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2. Métodos Generales
2.1. Dataset

Se trabajó con un dataset de 6899 imágenes que fue sometido a un sampleo estratificado. El dataset
consta de imágenes previamente clasificadas en 5 grupos: airplane (727), car (968), cat (885), dog
(702), flower (843), fruit (1000), motorbike (788) y personas (986).

Cuadro 1: Resumen del dataset de imágenes
Métrica Descripción
Tamaños únicos de imagen 3602 resoluciones distintas
Tamaño más común 100x100 con 1968 imágenes
Canales Todas las imágenes tienen 3 canales (RGB)
Tipo de dato Solo se usa uint8 (valores entre 0 y 255)
Rango global de píxeles Mínimo = 0, Máximo = 255
Tamaños con solo 1 imagen La gran mayoría de tamaños son únicos (Cantidad = 1)

En el cuadro 1 se puede observar un resumen de las principales propiedades del dataset bajo
estudio.

Ejemplos de imágenes por tipo

Figura 1: Ejemplo de imágenes naturales que componen al dataset

En la figura de 1 se puede observar un grupo de imágenes de ejemplos de cada tipo del dataset.

Promedio de las imágenes
Se generaron promedios tanto generales como específicos por cada clase de imagen natural a partir

de las muestras disponibles. Estos promedios se calcularon tomando en cuenta los valores de los
píxeles en las imágenes, produciendo una representación promedio de los colores y características
visuales de cada grupo.

Promedio General:
La imagen promedio, como se muestra en la Figura , fue construida a partir del total de las 6.899

imágenes del dataset. Esta imagen proporciona una vista general de las características comunes pre-
sentes en el conjunto completo. El promedio global ayuda a identificar patrones visuales dominantes
y tendencias generales en cuanto a color y forma. Ver figura 3

Promedios por Clase:
Además, se calcularon imágenes promedio para cada una de las clases del dataset (airplane, car, cat,

dog, flower, fruit, motorbike y person). Estas imágenes promedio, mostradas en la Figura 2, permiten
observar características visuales particulares de cada categoría, como diferencias en color, estructura
y distribución espacial.
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Figura 2: Imágenes promedios por tipo
Figura 3: Imágenes Glo-
bal promedios

La observación de estas imágenes revela que, si bien algunas clases comparten características
comunes (por ejemplo, formas difusas en clases como flower o fruit), otras muestran patrones
visuales más definidos (como en airplane o car), lo cual puede resultar útil para tareas de clasificación
automática basada en aspectos visuales.

Análisis de color por clase con imágenes homogenizadas:

Figura 4: Histogramas normalizados de color por clase (224x224)

Se redimensionaron todas las imágenes a 224×224×3 píxeles para asegurar consistencia espacial y
compatibilidad con arquitecturas como VGG16. Luego, se calcularon histogramas RGB por clase
utilizando cv2.calcHist, y se normalizaron para obtener frecuencias relativas. Esto permitió comparar
de forma justa las distribuciones de color entre clases, eliminando el sesgo por tamaño o cantidad de
imágenes.

Para la extracción de features de estas imágenes se utilizó un modelo pre-entreando de redes
neuronales conocido como VGG16, un modelo de Transfer Learning que posee 16 capas (con pesos)
pre entrenado para clasificación de imágenes. Dicho modelo está implementado en Keras y por
default trabaja con imágenes de 224x224. Al estar trabajando un dataset de imágenes de distintos
tamaños, las mismas debieron ser redimensionadas antes de aplicar el modelo. Como output, el
modelo devuelve 4092 features para cada una de las imágenes que luego serán las utilizadas. Se
utilizó el conjunto Natural Images, compuesto por 6.899 imágenes distribuidas en 8 clases visuales.
Como paso previo, se aplicó un proceso de preprocesamiento que incluyó:

Normalización de los valores de pixel.
Redimensionamiento uniforme de las imágenes a 224x224 píxeles.
Conservación de etiquetas reales para análisis posteriores (aunque no se usan durante el
clustering ni entrenamiento del autoencoder).

Estas transformaciones fueron necesarias para adaptar las imágenes al formato de entrada requerido
por el modelo VGG16, utilizado posteriormente para la extracción de atributos visuales.

2.2. Extracción de atributos visuales (VGG16)
Para representar cada imagen como un vector de características, se empleó un modelo VGG16

preentrenado en ImageNet, removiendo la capa final de clasificación. Las activaciones intermedias
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de una capa convolucional fueron extraídas como vectores de atributos visuales de alta dimensión,
lo que permite capturar representaciones profundas sin necesidad de entrenamiento adicional. Esta
etapa permitió convertir cada imagen en una representación numérica útil para tareas no supervisadas.

2.3. Reducción de la dimensionalidad
Se optó por conservar el 70 % de la varianza acumulada mediante PCA como umbral de corte, ya

que permitió reducir los vectores de 4096 dimensiones a solo 155 componentes principales. Este valor
fue seleccionado por representar un equilibrio razonable entre compresión y representatividad: aunque
umbrales mayores como el 95 % requerían hasta 1416 componentes, con incrementos marginales de
información, el 70 % retiene buena parte de la estructura de los datos con una reducción significativa
en la dimensionalidad.

2.4. Clustering sobre imágenes reales
De manera tal de poder determinar el algoritmo de agrupamiento más apropiado para realizar

los posteriores experimentos sobre el conjunto de datos, se aplicaron técnicas de clustering no
supervisado sobre los componentes de los vectores de atributos extraídos. El objetivo fue evaluar
en qué medida las separaciones generadas por cada algoritmo preservan la estructura natural del
dataset. Se utilizaron los algoritmos K-Means, DBSCAN y Clustering Jerárquico como métodos
principales de agrupamiento, siendo el Clustering Jerárquico aquel algoritmo que pudo separar con
mayor coherencia las etiquetas reales del conjunto de datos. Esta etapa permite establecer una línea
base estructural para contrastar posteriormente con las anomalías generadas.

2.5. Generación de anomalías sintéticas

Figura 5: Ejemplos de anomalías sintéticas generadas por clase.

Se diseño un conjunto de datos de anomalías visuales. Estas estan formadas por:

Imágenes del dataset Artifact: Se utilizaron imágenes del dataset público Artifact, que
contiene gran cantidad de imágenes reales y sintéticas. Se seleccionaron principalmente
imágenes de perros, gatos, aviones, motos y personas generadas por modelos de difusión
como Stable Diffusion, Latent Diffusion, y GANs como StyleGAN2 y StyleGAN3. 1

Imágenes sintéticas sutiles: Para completar categorías subrepresentadas (como flores y
frutas) se generaron imágenes adicionales mediante IA generativa (OpenAI, modelos
ChatGPT O4 y Qwen), con el prompt: "Generá una imagen hiperrealista de <clase>".

1https://www.kaggle.com/datasets/awsaf49/artifact-dataset
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Imágenes meme públicas: Se creó la clase brainrot con imágenes bizarras tomadas de
internet, que combinan elementos de distintas clases (por ejemplo, un cocodrilo con un
avión). 2

Imágenes meme generadas: Para esta misma clase se generaron imágenes adicionales me-
diante IA generativa (OpenAI, modelos ChatGPT O4 y Qwen), combinando dos imágenes
del dataset original con el siguiente prompt :

Use these two input images to create a highly realistic and convincing surreal composite
image. It blends a {class_a} with a {class_b} in a bizarre and unnatural way. The integration
should be seamless enough to appear photographically real, despite the impossible nature
of the combination. Both elements ({class_a} and {class_b}) should be clearly identifiable
within the unified entity. Use expert photorealistic lighting, shadows, and textures to
enhance the sense of reality in this impossible scene. Neutral or abstract background.

La siguiente tabla ilustra la distribución de las clases (la cuál busca cierto balance con respecto al
dataset original):

Clase Etiqueta Cantidad de Registros Proporción
0 gato 16 14 %
1 fruta 6 5 %
2 persona 18 16 %
3 flor 10 9 %
4 motocicleta 13 12 %
5 avión 9 8 %
6 brainrot 10 9 %
7 auto 18 16 %
8 perro 13 12 %

Cuadro 2: Distribución por clase de imágenes falsas generadas.

Consideramos a una anomalía como grotesca o clase brainrot cuando no es simplemente una
imagen falsa realista de una clase existente (gato, perro, etc) si no, una imagen surrealista que
combina elementos de una clase con otra (como mezclar un cocodrilo con un avión).

Figura 6: Ejemplo de una anomalía sintética de clase brainrot

A modo de poder ejemplificar la caracterización de este tipo de anomalía, la siguiente figura ilustra
la aplicación de Connected-Component Labelling y Clustering Espectral. Para facilitar la detección
de la entidad, suavizamos la imagen, escalamos a 90x90 y aplicamos un blur lateral tal como se
observa en la figura anterior.

Figura 7: Aplicación de Connected-Component Labelling y Clustering Espectral sobre el ejemplo

2https://italian-brainrot.org/
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Todas las imágenes del conjunto de datos de anomalías se encuentran normalizadas a 224x244
y en formato JPG. Se duplicó el dataset original y estas imágenes fueron introducidas en el dataset
como anomalías visuales en cada categoría correspondiente, reemplazando imágenes originales por
cada anomalía insertada en cada clase previamente existente. Para la clase "brainrot", no presente en
el dataset original, se agregaron todas las imágenes, sin reemplazarla por ninguna del dataset original,
quedando un total de 6909 imágenes. De manera de poder tener una comparación homogénea, este
conjunto de datos pasó por extracción de atributos vía VGG16 y luego reducción de la dimensionalidad
por PCA. Los componentes de los vectores de atributos fueron el insumo para los algoritmos de
agrupamiento. Conservamos las etiquetas de clase (car, cat, dog, etc.) y tipo (fake o real) para posterior
validación. Estas etiquetas no fueron utilizadas en el proceso de agrupamiento dada la naturaleza no
supervisada del proceso.

2.6. Experimentos: Agrupamiento ante la inoculación de imagenés falsas
Tomando de referencia las experiencias de Clustering sobre dataset original (K-Means, DBSCAN y

Clustering Jerárquico Aglomerativo), procedemos a evaluar en una nueva experiencia la capacidad del
Clustering Jerárquico de separar, sin conocimiento a apriorístico de las etiquetas reales, las imágenes
normales de las anómalas.

Experiencias A: K-Means, DBSCAN y Clustering jerárquico sobre el dataset sin inoculación
de anomalías
Experiencia B: Clustering jerárquico sobre el dataset con inoculación de anomalías

Para el dataset de anomálias solo realizamos Clustering Jerárquico ya que era el que encontramos
más performante en cuanto a una separación coherente de las etiquetas reales del dataset.

2.7. Método de evaluación
A partir de las etiquetas reales, se utilizó una matriz de confusión para validar el rendimiento del

modelo en ambas situaciones. Con ella, se buscó identificar si la separación de los clusters coincidía
o no con las etiquetas reales del conjunto de datos, observando si tal separación difería cuando las
imágenes eran falsas o reales.

3. Resultados y discusión
3.1. Análisis Exploratorio preliminar
3.1.1. Extracción de atributos con modelo VGG16

Para esta investigación se trabajó con un conjunto de 6.899 imágenes naturales, distribuidas en 8
categorías visualmente distintas: aviones, autos, gatos, flores, perros, frutas, motos y personas. Esta
diversidad proporciona un escenario ideal para explorar representaciones visuales profundas y aplicar
técnicas no supervisadas como reducción de dimensionalidad y agrupamiento.

Se empleó el modelo VGG16 preentrenado en ImageNet para la extracción de características
visuales. En particular, se utilizó la capa densa fc1, que genera vectores de 4096 dimensiones por
imagen. Estas representaciones condensan información abstracta de alto nivel relacionada con formas,
texturas, patrones y estructuras semánticas, aprendidas a partir de millones de imágenes.

Cuadro 3: Resumen del dataset de imágenes y estadísticas de los features
Descripción Valor
Número de imágenes 6899
Dimensiones por imagen 4096
Media global de los features 0.4730
Desviación estándar global 1.1470
Valor mínimo 0.0000
Valor máximo 28.4520

El análisis estadístico que puede observarse en la figura 3 de los vectores arrojó una media global
de 0.473, una desviación estándar de 1.147, y valores en el rango de 0 a 28.45. Estas diferencias de
escala entre dimensiones reflejan una activación desigual entre componentes.

Además, considerando la alta heterogeneidad visual entre clases —como personas frente a vehícu-
los o animales—, se concluyó que es fundamental aplicar una estandarización basada en Z-score.
Esto permite que todas las características contribuyan de manera equilibrada a los algoritmos posterio-
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Figura 8: Distribución por componente (features VGG16)

res, evitando que ciertas dimensiones dominen el análisis debido a diferencias de escala o activación.
Ver Figura 8.

Reducción de Dimensionalidad para Clustering Posteriormente, se aplicó el Análisis de Compo-
nentes Principales (PCA) como técnica de reducción de dimensionalidad, con el objetivo de preservar
la mayor parte de la información visual original, reduciendo al mismo tiempo la carga computacional.
Ver figura 9
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Figura 9: Varianza acumulada explicada

Se evaluó la varianza explicada acumulada por los componentes principales, obteniéndose los
siguientes resultados:

Para explicar el 95 % de la varianza, fueron necesarios 1.416 componentes.
Para capturar el 80 % de la varianza, se necesitaron 348 componentes.
Para alcanzar el 75 % de la varianza, bastaron 229 componentes.
Para retener el 70 % de la varianza, fueron suficientes 155 componentes.

Por equilibrio entre eficiencia y preservación de información relevante, se redujo la dimensionalidad
a 155 componentes, lo que representa aproximadamente el 70 % de la varianza total. Esta elección se
considera razonable, ya que en las visualizaciones del espacio reducido (tanto en 2D como en 3D), los
datos mantienen una estructura coherente, permitiendo identificar patrones y posibles agrupamientos.
Esto sugiere que la reducción conserva información suficiente para el análisis posterior (ver Figuras 10
y 11).
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Figura 10: Proyección PCA 2D con etiquetas
(coloreado por clase)

Figura 11: Proyección PCA 3D con etiquetas
(coloreado por clase)

3.1.2. Clustering
Como parte del análisis exploratorio, se aplicaron técnicas de clustering no supervisado con el

objetivo de analizar la estructura interna del conjunto de imágenes reales, sin utilizar etiquetas.
Esto permite identificar patrones visuales latentes y establecer una línea base estructural frente a
la cual evaluar, posteriormente, la incorporación de imágenes generadas por inteligencia artificial,
en línea con la hipótesis del trabajo. Se utilizaron tres algoritmos con enfoques complementarios:
KMeans, DBSCAN y Clustering Jerárquico. KMeans brinda una partición eficiente basada en
distancia euclidiana, útil como referencia inicial; el método jerárquico permite explorar similitudes a
distintos niveles sin fijar el número de grupos; y DBSCAN detecta agrupamientos según densidad,
ideal para formas irregulares y detección de outliers. Esta combinación permite capturar estructuras
diversas en los datos naturales. Para evaluar la calidad de los agrupamientos se utilizaron métricas
internas como Silhouette y SSE, junto con métricas externas como los índices de Rand ajustado y
de van Dongen, complementadas con visualizaciones en espacios reducidos mediante PCA, T-SNE,
ISOMAP y UMAP. Cabe señalar que los agrupamientos se realizaron sobre una versión reducida
de los datos por PCA (70 % de varianza retenida), lo cual, al tratarse de una técnica lineal, podría
implicar cierta pérdida de información que afecte la precisión de los resultados de clustering.

Algoritmo de Clustering K-means El algoritmo KMeans representa una estrategia inicial eficaz
para realizar agrupamiento, ya que segmenta los datos en grupos mediante la minimización de
distancias a centroides definidos. A pesar de requerir la especificación previa del número de clusters,
su simplicidad computacional y su interpretación clara lo convierten en una herramienta valiosa para
obtener una primera aproximación a la estructura del conjunto de datos.

Aplicación del algoritmo y determinación de parámetros.

Se aplicó el algoritmo K-Means sobre el conjunto de atributos extraídos mediante VGG16 y
reducidos dimensionalmente mediante PCA. Para determinar el número óptimo de clusters, se
utilizaron dos métricas clave: el Silhouette Score y la Suma de Errores Cuadrados (SSE).Ver figuras
12 y 13

Figura 12: Detección de máximos locales en
Silhouette

Figura 13: Detección de mínimos locales en
SSE (Codo)

10



Los resultados obtenidos muestran que para k = 7 se observa un mínimo local pronunciado en
la curva de SSE, lo que sugiere un posible punto de “codo”, indicando un buen equilibrio entre
compacidad y complejidad del modelo. A su vez, este mismo valor de k coincide con el máximo local
más alto en el coeficiente de silueta (0,1595), lo cual refuerza su validez como una opción sólida para
el agrupamiento. Si bien se identificaron otros máximos locales en la métrica de silueta para valores
más altos de k (como k = 9, k = 11 y k = 17), la mejora en el score es marginal o decreciente, y
podría representar sobresegmentación sin una ganancia clara en la calidad del clustering. Por tanto,
k = 7 se perfila como una elección razonable para representar la estructura interna de los datos con
un buen compromiso entre simplicidad y coherencia de los grupos.

Figura 14: Gráfico de Silhouette para k = 8 Figura 15: Gráfico de Silhouette para k = 7

Dado que el conjunto de imágenes cuenta con 8 clases reales, se consideró relevante evaluar el
comportamiento del agrupamiento para k = 8 utilizando un gráfico de silueta. Esta visualización
permite analizar la validez interna de los clusters generados por KMeans, sin necesidad de recurrir a
las etiquetas durante el proceso de agrupamiento. Al comparar los resultados de k = 7 (valor sugerido
por el análisis de SSE y Silhouette) con k = 8 (coincidente con la cantidad de clases reales), se busca
identificar si el número natural de categorías del conjunto se refleja en la estructura no supervisada de
los datos. Si bien un valor de k coincidente con las clases reales podría parecer ideal, su validez se
sustenta únicamente si el agrupamiento resultante presenta separación clara entre grupos y valores
altos de silueta, lo que se evalúa visualmente en este gráfico. Ver figura 14 y 15

Bootstrapping: SSE y Silhouette Score

Con el objetivo de obtener estimaciones más robustas y confiables para la selección del número óptimo
de clusters, se implementó un procedimiento de validación mediante bootstrap con 500 repeticiones,
evaluando valores de k en el rango de 2 a 15. En cada iteración se generó una muestra con reemplazo
del conjunto de datos reducidos por PCA, se aplicó K-Means y se calcularon tanto el Silhouette
Score como el SSE (Sum of Squared Errors). Esto permitió estimar la media y desviación estándar
de ambas métricas para cada valor de k, brindando así una visión más estable y estadísticamente
respaldada del comportamiento del modelo. Los resultados obtenidos pueden observarse en la Tabla
4 y la Figura 16.
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Cuadro 4: Resumen de métricas Silhouette y SSE para distintos valores de k

k Silhouette (mean) Silhouette (std) SSE (mean) SSE (std)
2 0.0787 0.0276 18513296.1000 229020.7174
3 0.0804 0.0214 17376571.2500 251301.7037
4 0.0934 0.0192 16322651.7060 321846.8243
5 0.1121 0.0172 15329635.3840 356152.1431
6 0.1286 0.0188 14502203.9900 427357.8625
7 0.1437 0.0215 13763950.7220 470525.2268
8 0.1546 0.0224 13072519.6540 427061.3057
9 0.1573 0.0215 12663256.0700 357470.3219
10 0.1562 0.0185 12346426.7860 278597.7151
11 0.1501 0.0195 12130191.1620 220444.5384
12 0.1438 0.0204 11947626.3120 175388.3986
13 0.1388 0.0206 11780520.3220 145673.0204
14 0.1321 0.0197 11634909.8380 130036.9878
15 0.1271 0.0183 11502970.7540 143393.9048
16 0.1236 0.0182 11367824.5560 119204.0198

Figura 16: Bootstrapping: SSE y Silhouette Score

Los resultados muestran una evolución esperable en ambas métricas: el SSE disminuye progresiva-
mente a medida que aumenta el número de clusters, indicando una mayor compacidad interna, aunque
con ganancias decrecientes. Por otro lado, el Silhouette Score mejora hasta alcanzar un máximo
local en k = 9 (0,1573± 0,0215), lo que sugiere que esta configuración ofrece el mejor equilibrio
entre cohesión intra-cluster y separación entre grupos dentro del rango evaluado. No obstante, los
valores para k = 7 y k = 8 también son elevados (0.1437 y 0.1546 respectivamente), y presentan
un comportamiento estable. Esto refuerza que el agrupamiento en torno a 7–9 clusters es razonable,
y permite seleccionar k = 7 como solución final, priorizando interpretabilidad y simplicidad, sin
sacrificar calidad estructural.

Cabe destacar que, si bien el conjunto cuenta con 8 clases reales, el modelo no supervisado
sugiere que 7 clusters son suficientes para capturar la organización más representativa de los datos.
Esta diferencia puede deberse a la existencia de clases visualmente similares, solapamientos entre
categorías o la presencia de outliers, todos factores que pueden influir en el proceso de agrupamiento
sin etiquetas.
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Evaluación del agrupamiento respecto a las etiquetas reales.

Figura 17: Matriz de confusión

La matriz de confusión (ver figura 17) obtenida al comparar los clusters generados por el algo-
ritmo K-Means con k = 7 frente a las etiquetas reales revela una correspondencia elevada entre
agrupamientos no supervisados y categorías originales. Clases como car, person, fruit y motorbike
fueron agrupadas de forma casi perfecta, con una precisión superior al 99.5 % en un único cluster.
También se observó una asignación dominante para airplane y cat, aunque con leves dispersiones.
Sin embargo, el cluster 0 agrupó conjuntamente imágenes de las clases dog y flower, evidenciando
una confusión estructural que podría atribuirse a similitudes visuales o a la pérdida de información
durante la reducción de dimensionalidad por PCA. A pesar de esta superposición, la segmentación
general fue consistente y precisa. Esta conclusión se refuerza con las métricas de evaluación: el índice
de Rand Ajustado (ARI) alcanzó un valor de 0.8800, lo que indica una fuerte coincidencia entre los
clusters y las etiquetas reales; mientras que el índice de van Dongen fue de 0.0574, reflejando una
baja disimilitud estructural. En conjunto, estos resultados validan que K-Means logró una agrupación
eficaz en relación con la estructura real del conjunto de datos.

Visualización de los resultados en espacios reducidos.

Figura 18: Visualización con T-SNE 2D con cambios en plerplexity

Se realizó una visualización en dos dimensiones mediante t-SNE con el objetivo de comparar la
estructura descubierta por K-Means (k = 7) con las etiquetas reales del conjunto de datos. La figura
incluye cuatro paneles: el primero muestra las proyecciones t-SNE coloreadas según las clases reales,
y los tres restantes representan los agrupamientos generados por K-Means bajo distintos valores de
perplexity (10, 30 y 50). Esta variación permite analizar cómo se proyectan los datos según diferentes
escalas de vecindad. Entre las configuraciones evaluadas, se observó que perplexity=50 ofreció la
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representación más clara y estructurada de los clusters, revelando mejor separación entre grupos y
mayor coherencia visual con las clases originales. Esta visualización cualitativa aporta evidencia
adicional sobre la correspondencia entre los grupos descubiertos y la estructura real del conjunto. Ver
figura 18

Figura 19: Visualización con T-SNE 3D

Se construyó una visualización tridimensional del espacio reducido mediante t-SNE con 3 com-
ponentes y perplexity=50, a partir de los datos transformados por PCA. El objetivo fue comparar la
organización de los clusters generados por K-Means (k = 7) con la distribución real de las clases en
el conjunto de imágenes. La figura resultante contiene dos gráficos: el primero muestra los grupos
asignados por el algoritmo K-Means, mientras que el segundo presenta las etiquetas reales. Esta
representación permite evaluar visualmente el grado de coincidencia entre ambas estructuras, identifi-
cando posibles solapamientos, separaciones claras o inconsistencias. La elección de perplexity=50
resultó adecuada para capturar tanto relaciones locales como globales en el conjunto, y facilitó una
observación más fluida de la distribución espacial de los datos en tres dimensiones.

Discusión e interpretación de los resultados.

El análisis con K-Means permitió explorar la estructura interna del conjunto de imágenes reales
de forma no supervisada, tras una reducción de dimensionalidad por PCA que conservó el 70 % de
la varianza. Para determinar el número óptimo de clusters, se evaluaron los valores de Silhouette
Score y SSE, validados por bootstrap con 500 repeticiones. El valor k = 7 emergió como el mejor
compromiso entre cohesión intra-cluster y separación entre grupos. Visualizaciones con t-SNE en
2D y 3D mostraron cierta correspondencia entre los clusters generados y las clases reales, aunque
con solapamientos evidentes. Esto fue confirmado por la matriz de confusión, donde varios clusters
contienen imágenes de distintas clases reales, lo cual sugiere similitudes visuales entre categorías o
limitaciones propias del modelo y la reducción lineal aplicada. Estos hallazgos resultan clave en el
marco de la hipótesis del trabajo, ya que permiten establecer un baseline estructural sobre datos
reales. A partir de esta línea base, será posible evaluar en etapas posteriores si las imágenes generadas
por inteligencia artificial se desvían significativamente de esta organización, aportando evidencia
sobre su carácter anómalo o no.

Clustering Jerárquico El clustering jerárquico resulta especialmente útil para datos visuales, ya
que permite explorar relaciones entre imágenes a distintos niveles de similitud sin requerir un número
fijo de grupos. Esta capacidad de revelar jerarquías implícitas lo hace valioso para establecer una
estructura base en imágenes reales, que luego puede compararse con la distribución de imágenes
sintéticas, en línea con la hipótesis de detección de anomalías visuales.

Aplicación del algoritmo y determinación de parámetros.

Se aplicó clustering jerárquico aglomerativo sobre una matriz de datos previamente normalizada y
reducida mediante PCA. Se evaluaron distintos métodos de enlace: ward, complete, average y single,
variando la cantidad de clusters en un rango de k=2 a k=49.
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Para cada configuración, se calcularon las métricas de Silhouette Score y SSE (Suma de Errores
Cuadráticos). Los resultados fueron graficados para comparar visualmente el comportamiento de los
diferentes métodos

Figura 20: Comparación de Agglomerative
Clustering

Figura 21: Comparación de Agglomerati-
ve Clustering con affinity=’cosine’ (excepto
ward)

Adicionalmente, se realizó un análisis comparativo utilizando distancias euclidianas y de coseno
en los métodos de enlace que lo permiten (complete, average, single). Se observó que el uso de la
distancia coseno mejoró los valores de Silhouette en comparación con la distancia euclidiana. El
método ward se mantuvo evaluado únicamente con distancia euclidiana por su restricción teórica. Ver
figuras 20 y 21

Figura 22: Dendrograma

La figura 22 muestra el Dendrograma asociado al Dataset que puede dar alguna idea de donde
puede hacer un corte que mejor ajuste, aunque no siempre es obvia la respuesta.
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Evaluación del agrupamiento respecto a las etiquetas reales.

Figura 23: Matriz de confusión

Posteriormente, se aplicó Agglomerative Clustering con enlace tipo ward y k = 9, y se evaluó
la segmentación resultante comparando los clusters asignados con las etiquetas reales del conjunto
de datos. Para ello, se construyó una tabla de contingencia, un heatmap y se calcularon métricas de
evaluación externas. El modelo logró una segmentación precisa en la mayoría de las clases, con un
índice de Rand ajustado (ARI) de 0.9379 y un V-Measure Score de 0.9564, lo que indica una fuerte
correspondencia entre los agrupamientos no supervisados y las categorías reales. No obstante, se
observó que la clase fruit se dividió principalmente entre dos clusters: 712 muestras en el cluster 1 y
288 en el cluster 3. Esta división sugiere una variabilidad interna significativa dentro de la categoría,
posiblemente asociada a subgrupos estructurales captados por el modelo jerárquico. Ver figura 23
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Visualización de los resultados en espacios reducidos.

Figura 24: Visualización con UMAP 2D

Finalmente, se utilizó UMAP con metric=’cosine’ para reducir los datos a 2 y 3 dimensiones,
permitiendo visualizar las asignaciones de cluster y las clases reales en un espacio latente.

Figura 25: Visualización con UMAP 3D

Algoritmo de Clustering DBSCAN El algoritmo DBSCAN es especialmente útil en el análisis
de datos visuales por su capacidad para identificar agrupamientos de forma arbitraria basados en
densidad, sin necesidad de especificar el número de clusters previamente. Esta propiedad le permite
detectar estructuras complejas y separar outliers de manera natural, lo cual es valioso en conjuntos
de imágenes reales que pueden contener clases poco definidas o ruido visual. Su aplicación permite
establecer una segmentación estructural robusta que sirve como base para contrastar la distribución
de imágenes sintéticas, en coherencia con la hipótesis de detección de anomalías visuales.
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Aplicación del algoritmo y determinación de parámetros.

Se aplicó el algoritmo DBSCAN para segmentar las imágenes en base a sus vectores de caracterís-
ticas reducidos. El análisis comparó el desempeño del algoritmo utilizando dos métricas de distancia:
euclidiana y coseno.

Figura 26: K-distance plot (k=5) - Métrica:
cosine

Figura 27: K-distance plot (k=5) - Métrica:
euclidean

Con la métrica euclidiana, DBSCAN no logró identificar agrupamientos significativos. En todas
las configuraciones probadas, casi la totalidad de los puntos fueron etiquetados como outliers y los
valores del Silhouette Score fueron negativos, lo que indica una pobre calidad de clustering.

Figura 28: Silhouette Score por eps y
min_samples - Métrica: cosine)

Figura 29: Silhouette Score por eps y
min_samples Métrica: euclidean

En cambio, al usar la distancia coseno, los resultados mejoraron notablemente. Se formaron varios
clusters con una baja proporción de outliers y valores de Silhouette Score en torno a 0.30, lo que
refleja una estructura de grupos más definida. Esto sugiere que la distancia coseno es más adecuada
para capturar la similitud entre imágenes en este espacio de representación. Ver figuras 26, 28, 27 y
29 y el cuadro 5

Cuadro 5: Mejores configuraciones de DBSCAN según Silhouette Score
# eps min_samples Clusters Outliers Silhouette
1 0.4 16 6 280 0.3007
2 0.4 13 6 236 0.3002
3 0.4 10 6 205 0.2999
4 0.3 13 10 1099 0.2554
5 0.3 10 10 984 0.2537

En resumen, DBSCAN combinado con la métrica coseno permitió detectar agrupamientos útiles,
mientras que con la métrica euclidiana no se logró segmentar de manera efectiva

Evaluación del agrupamiento respecto a las etiquetas reales. Se aplicó DBSCAN para agrupar

las imágenes en función de sus características, obteniendo resultados muy positivos. El modelo
logró formar clusters bien definidos, con un índice de Rand ajustado de 0.7836 y un V-Measure de
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0.9088, lo que indica una alta concordancia con las etiquetas reales y una buena separación entre
grupos. Además, DBSCAN logró asignar clusters al 96 % de las imágenes, dejando solo un pequeño
porcentaje como outliers. Ver figura 30

Figura 30: Matriz de confusión

Al observar la tabla de contingencia, se nota que la mayoría de las clases fueron bien agrupadas:
por ejemplo, las clases airplane, fruit, flower y person aparecen en clusters casi puros. Sin embargo,
destaca el Cluster 2, que agrupa simultáneamente una gran cantidad de imágenes de cat y dog, lo
que sugiere que estas dos clases no fueron bien diferenciadas por el modelo. Esta superposición
puede deberse a similitudes visuales entre ambas categorías o a limitaciones en las representaciones
utilizadas.

En resumen, DBSCAN mostró un rendimiento sólido en la segmentación no supervisada del
conjunto de imágenes, con una agrupación precisa en la mayoría de las clases y solo una confusión
importante entre gatos y perros.

Visualización de los resultados en espacios reducidos.

Se utilizó la técnica DBSCAN para agrupar las imágenes en el espacio reducido por PCA, emplean-
do los parámetros eps=0.4 y min_samples=16, con distancia basada en el coseno. Esta configuración
fue elegida por presentar un buen equilibrio entre número de clusters y proporción de outliers, además
de obtener un alto Silhouette Score.

Figura 31: Visualización con ISOMAP 2D
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Para visualizar los resultados, se aplicó una reducción adicional mediante Isomap a dos dimensiones.
En la figura resultante se comparan las etiquetas reales con los clusters generados por DBSCAN.
Se observa que, aunque algunos grupos coinciden parcialmente con las clases originales, también
hay una proporción considerable de puntos etiquetados como outliers, reflejando la sensibilidad
de DBSCAN a la densidad local. Esta representación permite analizar la estructura de los datos
desde una perspectiva no supervisada y evaluar la capacidad del modelo para detectar regiones bien
definidas en el espacio de características. Ver figuras 31 y 32

Figura 32: Visualización con ISOMAP 3D

Comparación métodos de clustering

El algoritmo K-Means permitió identificar una segmentación efectiva del conjunto de imágenes
reales, mostrando agrupamientos coherentes en clases como car, person, fruit y motorbike, con una
precisión superior al 99.5 % en algunos casos. Sin embargo, presentó solapamientos entre clases como
dog y flower, probablemente debido a similitudes visuales o a la pérdida de información causada por
la reducción de dimensionalidad con PCA. Además, es importante remarcar que K-Means requiere
definir el número de clusters de antemano y es sensible a la presencia de outliers, lo que puede afectar
negativamente la estabilidad del agrupamiento.

Por otro lado, el clustering jerárquico aglomerativo con enlace ward obtuvo los mejores resultados
globales, con un ARI de 0.9379 y un V-Measure de 0.9564. No solo logró una alineación precisa con
las etiquetas reales, sino que también captó subestructuras internas relevantes, como la división de la
clase fruit en dos agrupamientos bien definidos. Esta capacidad de representar jerarquías lo convierte
en una herramienta particularmente útil para explorar categorías visuales complejas y heterogéneas.

En cuanto a DBSCAN, su enfoque basado en densidad permitió detectar agrupamientos sólidos en
clases como airplane, fruit y person, además de identificar outliers de forma natural. No obstante,
mostró dificultades para separar las clases cat y dog, posiblemente debido a representaciones visuales
similares. En el contexto de este trabajo, donde se busca detectar anomalías visuales generadas
artificialmente, estas técnicas de clustering no supervisado ofrecen una base estructural inicial para
contrastar con la distribución de imágenes sintéticas. Así, contribuyen a validar la hipótesis de que
las imágenes anómalas pueden diferenciarse estructuralmente sin necesidad de etiquetas previas.

Entre los tres algoritmos evaluados, el clustering jerárquico y DBSCAN son los que mejor respaldan
la hipótesis del trabajo, ya que permiten identificar patrones estructurales y detectar desviaciones sin
requerir etiquetas previas. El clustering jerárquico facilita una exploración detallada de las relaciones
entre imágenes reales, lo que resulta útil como línea base para contrastar la presencia de anomalías.
Por su parte, DBSCAN destaca por su capacidad para detectar outliers y agrupamientos de forma
arbitraria, lo que lo vuelve especialmente valioso para identificar imágenes sintéticas que no encajan
en la estructura natural del conjunto. En cambio, K-Means, aunque útil como aproximación inicial,
resulta menos adecuado en este contexto debido a su sensibilidad a outliers y la necesidad de fijar un
número de clusters a priori.
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3.1.3. Clustering Jerarquico con anomalias

Figura 33: Matriz de Confusión

Dado que el clustering jerárquico aglomerativo tuvo mejor performance de acuerdo a los parametros
de validación anteriormente presentados decidimos aplicarlo pero al dataset inoculado con anomálias
para evaluar su comportamiento. La Figura 30 ilustra cómo se distribuyen las etiquetas reales en los
distintos clusters generados de manera no supervisada mediante clustering jerárquico en este nuevo
dataset. El objetivo de esta visualización es evaluar si los agrupamientos obtenidos coinciden con
las clases originales y, además, examinar si el algoritmo logra diferenciar entre imágenes reales y
sintéticas (anómalas). En línea con los resultados sobre el conjunto original sin anomalías, observamos
que el algoritmo logra separar de manera efectiva muchas de las clases reales en agrupamientos
coherentes. Ahora bien, como podría esperarse para las anomalías "sútiles", es decir aquellas son
imitaciones realistas, estas son agrupadas dentro de los mismos clusters que sus contrapartes reales. El
escenario es otro cuando se trata de agrupar las anomalias de clase "brainrot", pues no se diferencian
en un cluster único sino que se van solapando en distintos agrupamientos de manera altamente
diversificada. Esto sugiere que el algoritmo no logro ser resiliente ante ese tipo de inoculaciones ni
diferenciar imitadores realistas de las imágenes originales.
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Conclusiones
Los resultados obtenidos a partir de los tres algoritmos de clustering evaluados —K-Means,

DBSCAN y clustering jerárquico aglomerativo— sobre los componentes de vectores de atributos
(extraídos de VGG16) de las imagenes permiten validar parcialmente la hipótesis del trabajo. En
particular, el clustering jerárquico y DBSCAN demostraron ser los enfoques más adecuados para
detectar estructuras internas dentro del conjunto de imágenes naturales sin anomálias.

K-Means, aunque útil como aproximación inicial, presentó limitaciones notables: su sensibilidad
a outliers y la necesidad de definir previamente el número de clústeres afectaron negativamente su
desempeño, en especial en clases con alta variabilidad visual.

El clustering jerárquico aglomerativo se destacó por su capacidad para representar relaciones
jerárquicas y captar subestructuras dentro de clases complejas, como se evidenció en la división
interna de la categoría fruit. Además, obtuvo los mejores resultados cuantitativos del análisis, con un
ARI de 0,9379 y un V-Measure de 0,9564, lo que respalda su utilidad como herramienta sólida para
explorar agrupamientos visuales.

A partir de estos resultados, se seleccionó el clustering jerárquico como único algoritmo para el
segundo experimento, en el cual se introdujeron imágenes sintéticas (IFGIA) al conjunto original.
En esta fase, se observó que las anomalías visuales sutiles —aquellas que imitan de forma realista
elementos naturales— tienden a agruparse junto a sus contrapartes reales, lo que refleja una limitación
del enfoque no supervisado ante modificaciones visuales de baja intensidad. En cambio, las anomalías
grotescas (o “brainrot”) no formaron un clúster único ni se separaron de forma consistente, sino que
se dispersaron entre distintos grupos, lo que evidencia que la resiliencia del algoritmo frente a este
tipo de alteraciones aún es limitada.

En conjunto, se concluye que el clustering jerárquico aglomerativo si bien resultó muy eficaz para
separar clases naturales, al exponerlo a anomálias se presentan resultados diversos. Por un lado, las
más sútiles (imitaciones realistas de las imagenes originales) se agrupan en los mismos clusters que
la de las clases originales. Por otro, las anomálias grotescas se distribuyen pero sin un patrón claro
de homegenidad. Futuras investigaciones podrían contemplar un k más grande para evaluar si existe
separabilidad en sub-clusters que puedan diferenciar, por ejemplo, gatos reales de gatos falsos.
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