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Abstract

La creciente disponibilidad de imdgenes generadas mediante inteligencia artificial
(IA) plantea nuevos desafios en la deteccion de fraudes digitales, auditoria visual
y verificacion de autenticidad. Este trabajo evalia la capacidad de separacién no
supervisada de algoritmos de clustering aplicados a vectores de atributos visua-
les para distinguir entre imdgenes naturales y aquellas manipuladas o generadas
artificialmente. Como antecedente, se retoman enfoques previos en deteccion de
anomalias mediante clustering. Se utiliza el modelo VGG16 como extractor de
caracteristicas mediante transfer learning sobre el conjunto Natural Images, que
incluye ocho clases visuales. Primero se analizo la separabilidad de las etiquetas
reales sobre el conjunto de datos original probando K-Means, DBSCAN y Cluste-
ring Jerdrquico Aglomerativo y luego utilizamos el Clustering Jerdrquico (el que
encontramos mas apropiado al dataset) aplicado a una versién “inoculada” con
imdgenes falsas generadas por IA (IFGIA), con modificaciones sutiles y grotescas.
Los resultados muestran que el algoritmo con anomalias sigue separando coheren-
temente las etiquetas reales, pero existen limitaciones de diferenciacién cuando las
anomadlias son mds sitiles ya que estas se agrupan en los mismos clusters que las
reales mientras que anomadlias mds grotescas se aglutinan en diferentes clusters
distribuidos.

1. Introduccion

El avance de los modelos generativos ha multiplicado la disponibilidad de contenidos visuales
sintéticos, desde imdgenes hiperrealistas creadas con inteligencia artificial hasta memes, deepfakes y
artefactos visuales grotescos como los denominados "brainrots". Esta proliferacion plantea desafios
importantes para la seguridad informatica, la auditoria de contenidos, el control de calidad en
flujos digitales y la confianza en los datos. En paralelo, la deteccién de anomalias sigue siendo
un problema clave en contextos criticos como el control industrial o el monitoreo automatizado,
donde distinguir entre contenidos genuinos y sintéticos es cada vez mads relevante. Por un lado,
la deteccién de anomalias visuales tiene un papel clave en aplicaciones criticas como el control
industrial, donde identificar defectos o patrones inusuales de forma automatica puede prevenir fallos
o pérdidas. Por otro, el uso creciente de imagenes sintéticas generadas por IA —como deepfakes,
memes manipulados, bran rots, entre otros— plantea desafios importantes en cuanto a la veracidad,
auditoria, seguridad y calidad de los datos visuales. En este contexto, se vuelve necesario desarrollar
herramientas capaces de distinguir de forma confiable imdgenes reales de imagenes sintéticas o
alteradas.

La deteccién de anomalias visuales ha sido abordada desde distintos enfoques dentro del campo
del aprendizaje profundo, especialmente en contextos industriales y en el andlisis de contenidos
generados artificialmente. Entre los trabajos mds destacados se encuentran los métodos que combinan
autoencoders con aprendizaje por transferencia (transfer learning), asi como aquellos que aplican
arquitecturas Transformer para la deteccién no supervisada. Mds recientemente, han comenzado a



emerger estudios centrados especificamente en los riesgos asociados a los contenidos generados por
inteligencia artificial, conocidos como FAIGC (Fake Artificial Intelligence Generated Content). A
continuacidn, se describen cuatro contribuciones clave en la literatura que sirven como base para este
trabajo. Uno de los enfoques mads relevantes en deteccion semi-supervisada es el propuesto por Saeedi
y Giusti (2021), quienes desarrollan un método basado en autoencoders convolucionales entrenados
Unicamente con imagenes normales, y complementado con un extractor de caracteristicas previamente
entrenado. A partir de esta representacion, entrenan un clasificador de una sola clase para detectar
anomalias. Este enfoque es particularmente 1til cuando no se dispone de ejemplos etiquetados de
imigenes andmalas, y resulta aplicable tanto a imdgenes reales con defectos sutiles como a imagenes
sintéticas que alteran ligeramente la estructura de clases visuales conocidas. Su trabajo aporta una
estrategia robusta para la construccién de mapas de anomalia sin supervision directa sobre las clases
anomalas, lo cual se alinea con la motivacion de este estudio.

Por otro lado, Yang y Guo (2022) presentan un método completamente no supervisado para
la deteccién de anomalias en imédgenes industriales, utilizando una arquitectura basada en Vision
Transformers (ViT). Su propuesta aprovecha la capacidad de los Transformers para capturar relaciones
globales entre bloques de imagen, superando las limitaciones de los autoencoders convolucionales
tradicionales, que tienden a centrarse en patrones locales. Ademads, incorporan un médulo de memoria
y mecanismos de atencion coordinada para reforzar la diferenciacién entre muestras normales y
andmalas. Este trabajo resulta especialmente relevante como antecedente técnico para explorar el uso
de transfer learning en combinacién con métodos de agrupamiento, como se propone en la presente
investigacidén. Ademads, el relevamiento realizado por Yu et al. (2024) ofrece una visién general
integral sobre el fendmeno emergente de los contenidos falsos generados por IA (FAIGC). A través
de una clasificacion sistematica de métodos de generacidn, modalidades implicadas (texto, imagen,
video, voz) y estrategias de deteccidn, el trabajo establece un marco conceptual para comprender
los riesgos asociados a la proliferacion de este tipo de contenidos. Asimismo, destaca los desafios
especificos que plantea la deteccion de imdgenes sintéticas altamente realistas en contextos como
redes sociales, periodismo y ciberseguridad. Este articulo justifica la necesidad de desarrollar enfoques
que, como el aqui propuesto, puedan diferenciar de forma no supervisada entre imagenes genuinas
y aquellas alteradas o generadas por modelos generativos avanzados. Finalmente, la evaluacion
comparativa realizada por Sanchez Vinces et al. (2025) aporta una perspectiva valiosa sobre los
métodos de deteccion de anomalias basados en clustering, un enfoque tradicional que ha sido poco
explorado en los ultimos afios frente al auge de los métodos basados en aprendizaje profundo. Su
estudio demuestra que, cuando se aplican correctamente, las técnicas de agrupamiento como KMeans—
pueden igualar o incluso superar a métodos mds sofisticados en términos de eficiencia, calidad de
resultados y escalabilidad. Ademds, destacan su bajo costo computacional y mayor interpretabilidad,
cualidades especialmente relevantes en contextos de deteccién no supervisada. Esta linea de trabajo
apoya la viabilidad del enfoque que se explora en esta investigacion: utilizar algoritmos de clustering
aplicados a caracteristicas visuales extraidas por modelos previamente entrenados para distinguir
entre imagenes reales y generadas. En conjunto, estos antecedentes demuestran la evoluciéon de
la investigacién en deteccion de anomalias visuales, desde entornos industriales controlados hasta
escenarios abiertos con presencia de contenido sintético. También evidencian la pertinencia de aplicar
técnicas de clustering no supervisado sobre atributos visuales extraidos mediante transfer learning,
como una via prometedora para enfrentar los desafios actuales en verificacién de autenticidad de
im4genes.

Pregunta de investigacion. ;Es posible identificar, sin supervision ni etiquetas, imagenes sintéticas
generadas mediante inteligencia artificial como outliers visuales, utilizando clustering jerdrquico
sobre vectores de caracteristicas extraidas con VGG16, y lograr su separacion estructural respecto a
las imagenes naturales, especialmente en presencia de alteraciones visuales evidentes?

Hipétesis. Las imagenes sintéticas generadas mediante inteligencia artificial, especialmente aque-
llas con alteraciones visuales grotescas o incongruentes con las clases naturales, se comportan como
outliers dentro del espacio de caracteristicas extraido con VGGI6. En consecuencia, pueden ser
detectadas como anomalias y agrupadas en clusteres diferenciables mediante clustering jerdrquico
no supervisado, sin necesidad de etiquetas externas. Se espera que la capacidad de separacion sea
mads efectiva ante manipulaciones evidentes, y limitada ante modificaciones sutiles.



2. Métodos Generales

2.1. Dataset

Se trabaj6 con un dataset de 6899 imagenes que fue sometido a un sampleo estratificado. El dataset
consta de imagenes previamente clasificadas en 5 grupos: airplane (727), car (968), cat (885), dog
(702), flower (843), fruit (1000), motorbike (788) y personas (986).

Cuadro 1: Resumen del dataset de imdgenes

Métrica Descripcion

Tamanos tnicos de imagen | 3602 resoluciones distintas

Tamafio més comuin 100x100 con 1968 imagenes

Canales Todas las imagenes tienen 3 canales (RGB)

Tipo de dato Solo se usa uint8 (valores entre 0 y 255)

Rango global de pixeles Minimo = 0, Maximo = 255

Tamafios con solo 1 imagen | La gran mayoria de tamafios son tnicos (Cantidad = 1)

En el cuadro [I] se puede observar un resumen de las principales propiedades del dataset bajo
estudio.

Ejemplos de imagenes por tipo

Ejemplos de iméagenes por clase antes del preprocesamiento

airplane

Figura 1: Ejemplo de imdgenes naturales que componen al dataset

En la figura de[I] se puede observar un grupo de imédgenes de ejemplos de cada tipo del dataset.

Promedio de las imagenes

Se generaron promedios tanto generales como especificos por cada clase de imagen natural a partir
de las muestras disponibles. Estos promedios se calcularon tomando en cuenta los valores de los
pixeles en las imagenes, produciendo una representacién promedio de los colores y caracteristicas
visuales de cada grupo.

Promedio General:

La imagen promedio, como se muestra en la Figura , fue construida a partir del total de las 6.899
imdgenes del dataset. Esta imagen proporciona una vista general de las caracteristicas comunes pre-
sentes en el conjunto completo. El promedio global ayuda a identificar patrones visuales dominantes
y tendencias generales en cuanto a color y forma. Ver figura 3]

Promedios por Clase:

Ademas, se calcularon imagenes promedio para cada una de las clases del dataset (airplane, car, cat,
dog, flower, fruit, motorbike y person). Estas imégenes promedio, mostradas en la Figura 2] permiten
observar caracteristicas visuales particulares de cada categoria, como diferencias en color, estructura
y distribucién espacial.
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Figura 2: Iméagenes promedios por tipo bal promedios

Imagen promedio global

La observacion de estas imdgenes revela que, si bien algunas clases comparten caracteristicas
comunes (por ejemplo, formas difusas en clases como flower o fruit), otras muestran patrones
visuales mas definidos (como en airplane o car), lo cual puede resultar util para tareas de clasificacién
automadtica basada en aspectos visuales.

Analisis de color por clase con imagenes homogenizadas:

Histogramas normalizados de color por clase (224x224)

Clase: airplane Clase: car Clase: cat Clase: dog

Figura 4: Histogramas normalizados de color por clase (224x224)

Se redimensionaron todas las imagenes a 224x224x3 pixeles para asegurar consistencia espacial y
compatibilidad con arquitecturas como VGG16. Luego, se calcularon histogramas RGB por clase
utilizando cv2.calcHist, y se normalizaron para obtener frecuencias relativas. Esto permitié comparar
de forma justa las distribuciones de color entre clases, eliminando el sesgo por tamafio o cantidad de
imagenes.

Para la extraccién de features de estas imagenes se utilizé un modelo pre-entreando de redes
neuronales conocido como VGG16, un modelo de Transfer Learning que posee 16 capas (con pesos)
pre entrenado para clasificaciéon de imagenes. Dicho modelo estd implementado en Keras y por
default trabaja con imadgenes de 224x224. Al estar trabajando un dataset de imadgenes de distintos
tamafios, las mismas debieron ser redimensionadas antes de aplicar el modelo. Como output, el
modelo devuelve 4092 features para cada una de las imdgenes que luego seran las utilizadas. Se
utilizo el conjunto Natural Images, compuesto por 6.899 imagenes distribuidas en 8 clases visuales.
Como paso previo, se aplicé un proceso de preprocesamiento que incluyo:

= Normalizacién de los valores de pixel.
= Redimensionamiento uniforme de las imagenes a 224x224 pixeles.

= Conservacion de etiquetas reales para andlisis posteriores (aunque no se usan durante el
clustering ni entrenamiento del autoencoder).

Estas transformaciones fueron necesarias para adaptar las imagenes al formato de entrada requerido
por el modelo VGG16, utilizado posteriormente para la extraccion de atributos visuales.

2.2. Extraccion de atributos visuales (VGG16)

Para representar cada imagen como un vector de caracteristicas, se empled un modelo VGG16
preentrenado en ImageNet, removiendo la capa final de clasificacion. Las activaciones intermedias



de una capa convolucional fueron extraidas como vectores de atributos visuales de alta dimensidn,
lo que permite capturar representaciones profundas sin necesidad de entrenamiento adicional. Esta
etapa permitié convertir cada imagen en una representacién numérica util para tareas no supervisadas.

2.3. Reduccion de la dimensionalidad

Se opt6 por conservar el 70 % de la varianza acumulada mediante PCA como umbral de corte, ya
que permiti6 reducir los vectores de 4096 dimensiones a solo 155 componentes principales. Este valor
fue seleccionado por representar un equilibrio razonable entre compresion y representatividad: aunque
umbrales mayores como el 95 % requerian hasta 1416 componentes, con incrementos marginales de
informacion, el 70 % retiene buena parte de la estructura de los datos con una reduccién significativa
en la dimensionalidad.

24. Clustering sobre imagenes reales

De manera tal de poder determinar el algoritmo de agrupamiento mds apropiado para realizar
los posteriores experimentos sobre el conjunto de datos, se aplicaron técnicas de clustering no
supervisado sobre los componentes de los vectores de atributos extraidos. El objetivo fue evaluar
en qué medida las separaciones generadas por cada algoritmo preservan la estructura natural del
dataset. Se utilizaron los algoritmos K-Means, DBSCAN y Clustering Jerarquico como métodos
principales de agrupamiento, siendo el Clustering Jerarquico aquel algoritmo que pudo separar con
mayor coherencia las etiquetas reales del conjunto de datos. Esta etapa permite establecer una linea
base estructural para contrastar posteriormente con las anomalias generadas.

2.5. Generacion de anomalias sintéticas

Example Images per Class
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Figura 5: Ejemplos de anomalias sintéticas generadas por clase.

Se disefio un conjunto de datos de anomalias visuales. Estas estan formadas por:

= Imagenes del dataset Artifact: Se utilizaron imdgenes del dataset ptiblico Artifact, que
contiene gran cantidad de imédgenes reales y sintéticas. Se seleccionaron principalmente
imagenes de perros, gatos, aviones, motos y personas generadas por modelos de difusién
como Stable Diffusion, Latent Diffusion, y GANs como StyleGAN2 y StyleGAN3.|I|

= Imagenes sintéticas sutiles: Para completar categorias subrepresentadas (como flores y
frutas) se generaron imagenes adicionales mediante IA generativa (OpenAl, modelos
ChatGPT 04y Qwen), con el prompt: "Generd una imagen hiperrealista de <clase>".

"https://www.kaggle.com/datasets/awsaf49/artifact-dataset



= Imagenes meme piblicas: Se creé la clase brainrot con imagenes bizarras tomadas de
internet, que combinan elementos de distintas clases (por ejemplo, un cocodrilo con un

avi(’)n).E|

= Imagenes meme generadas: Para esta misma clase se generaron imdgenes adicionales me-
diante IA generativa (OpenAl, modelos ChatGPT O4 y Qwen), combinando dos imigenes
del dataset original con el siguiente prompt :

Use these two input images to create a highly realistic and convincing surreal composite
image. It blends a {class_a} with a {class_b} in a bizarre and unnatural way. The integration
should be seamless enough to appear photographically real, despite the impossible nature
of the combination. Both elements ({class_a} and {class_b}) should be clearly identifiable
within the unified entity. Use expert photorealistic lighting, shadows, and textures to
enhance the sense of reality in this impossible scene. Neutral or abstract background.

La siguiente tabla ilustra la distribucién de las clases (la cudl busca cierto balance con respecto al
dataset original):

Clase | Etiqueta Cantidad de Registros | Proporcion
0 gato 16 14 %
1 fruta 6 5%
2 persona 18 16 %
3 flor 10 9%
4 motocicleta 13 12 %
5 avién 9 8 %
6 brainrot 10 9%
7 auto 18 16 %
8 perro 13 12 %

Cuadro 2: Distribucién por clase de imdgenes falsas generadas.

Consideramos a una anomalia como grotesca o clase brainrot cuando no es simplemente una
imagen falsa realista de una clase existente (gato, perro, etc) si no, una imagen surrealista que
combina elementos de una clase con otra (como mezclar un cocodrilo con un avién).

Figura 6: Ejemplo de una anomalia sintética de clase brainrot

A modo de poder ejemplificar la caracterizacién de este tipo de anomalia, la siguiente figura ilustra
la aplicacién de Connected-Component Labelling y Clustering Espectral. Para facilitar la deteccién
de la entidad, suavizamos la imagen, escalamos a 90x90 y aplicamos un blur lateral tal como se
observa en la figura anterior.

Imagen Original (Grayscale) 1 Componentes Conectados Spectral clustering: kmeans, 112.655

24
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Figura 7: Aplicacién de Connected-Component Labelling y Clustering Espectral sobre el ejemplo

*https://italian-brainrot.org/



Todas las imédgenes del conjunto de datos de anomalias se encuentran normalizadas a 224x244
y en formato JPG. Se duplicé el dataset original y estas imédgenes fueron introducidas en el dataset
como anomalias visuales en cada categoria correspondiente, reemplazando imédgenes originales por
cada anomalia insertada en cada clase previamente existente. Para la clase "brainrot", no presente en
el dataset original, se agregaron todas las imagenes, sin reemplazarla por ninguna del dataset original,
quedando un total de 6909 imdgenes. De manera de poder tener una comparacién homogénea, este
conjunto de datos paso por extraccion de atributos via VGG16 y luego reduccion de 1a dimensionalidad
por PCA. Los componentes de los vectores de atributos fueron el insumo para los algoritmos de
agrupamiento. Conservamos las etiquetas de clase (car, cat, dog, etc.) y tipo (fake o real) para posterior
validacion. Estas etiquetas no fueron utilizadas en el proceso de agrupamiento dada la naturaleza no
supervisada del proceso.

2.6. Experimentos: Agrupamiento ante la inoculacion de imagenés falsas

Tomando de referencia las experiencias de Clustering sobre dataset original (K-Means, DBSCAN y
Clustering Jerdrquico Aglomerativo), procedemos a evaluar en una nueva experiencia la capacidad del
Clustering Jerarquico de separar, sin conocimiento a aprioristico de las etiquetas reales, las imagenes
normales de las anémalas.

= Experiencias A: K-Means, DBSCAN y Clustering jerarquico sobre el dataset sin inoculacién
de anomalias

= Experiencia B: Clustering jerarquico sobre el dataset con inoculacién de anomalias

Para el dataset de anomalias solo realizamos Clustering Jerarquico ya que era el que encontramos
mds performante en cuanto a una separacion coherente de las etiquetas reales del dataset.

2.7. Método de evaluacion

A partir de las etiquetas reales, se utilizé una matriz de confusion para validar el rendimiento del
modelo en ambas situaciones. Con ella, se buscé identificar si la separacion de los clusters coincidia
o0 no con las etiquetas reales del conjunto de datos, observando si tal separacién diferia cuando las
imdgenes eran falsas o reales.

3. Resultados y discusion

3.1. Analisis Exploratorio preliminar

3.1.1. Extraccion de atributos con modelo VGG16

Para esta investigacién se trabajé con un conjunto de 6.899 imégenes naturales, distribuidas en 8
categorias visualmente distintas: aviones, autos, gatos, flores, perros, frutas, motos y personas. Esta
diversidad proporciona un escenario ideal para explorar representaciones visuales profundas y aplicar
técnicas no supervisadas como reduccién de dimensionalidad y agrupamiento.

Se empled el modelo VGG16 preentrenado en ImageNet para la extraccién de caracteristicas
visuales. En particular, se utiliz6 la capa densa fc1, que genera vectores de 4096 dimensiones por
imagen. Estas representaciones condensan informacion abstracta de alto nivel relacionada con formas,
texturas, patrones y estructuras semanticas, aprendidas a partir de millones de iméagenes.

Cuadro 3: Resumen del dataset de imagenes y estadisticas de los features

Descripcion Valor
Numero de imagenes 6899
Dimensiones por imagen 4096

Media global de los features | 0.4730
Desviacion estandar global 1.1470
Valor minimo 0.0000
Valor maximo 28.4520

El andlisis estadistico que puede observarse en la figura[3|de los vectores arrojé una media global
de 0.473, una desviacion estandar de 1.147, y valores en el rango de 0 a 28.45. Estas diferencias de
escala entre dimensiones reflejan una activacion desigual entre componentes.

Ademds, considerando la alta heterogeneidad visual entre clases —como personas frente a vehicu-
los 0 animales—, se concluyoé que es fundamental aplicar una estandarizacion basada en Z-score.
Esto permite que todas las caracteristicas contribuyan de manera equilibrada a los algoritmos posterio-
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Figura 8: Distribucién por componente (features VGG16)

res, evitando que ciertas dimensiones dominen el andlisis debido a diferencias de escala o activacion.
Ver Figura 8]

Reduccion de Dimensionalidad para Clustering Posteriormente, se aplicé el Andlisis de Compo-
nentes Principales (PCA) como técnica de reduccion de dimensionalidad, con el objetivo de preservar

la mayor parte de la informacién visual original, reduciendo al mismo tiempo la carga computacional.
Ver figura[9]
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Figura 9: Varianza acumulada explicada

Se evalu6 la varianza explicada acumulada por los componentes principales, obteniéndose los
siguientes resultados:

= Para explicar el 95 % de la varianza, fueron necesarios 1.416 componentes.
= Para capturar el 80 % de la varianza, se necesitaron 348 componentes.

= Para alcanzar el 75 % de la varianza, bastaron 229 componentes.

= Para retener el 70 % de la varianza, fueron suficientes 155 componentes.

Por equilibrio entre eficiencia y preservacion de informacion relevante, se redujo la dimensionalidad
a 155 componentes, lo que representa aproximadamente el 70 % de la varianza total. Esta eleccién se
considera razonable, ya que en las visualizaciones del espacio reducido (tanto en 2D como en 3D), los
datos mantienen una estructura coherente, permitiendo identificar patrones y posibles agrupamientos.
Esto sugiere que la reduccion conserva informacion suficiente para el andlisis posterior (ver Figuras[I0]

y [L).



Proyeccién PCA 3D con etiquetas (coloreado por clase)
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Figura 10: Proyeccién PCA 2D con etiquetas Figura 11: Proyeccién PCA 3D con etiquetas
(coloreado por clase) (coloreado por clase)

3.1.2. Clustering

Como parte del andlisis exploratorio, se aplicaron técnicas de clustering no supervisado con el
objetivo de analizar la estructura interna del conjunto de imdagenes reales, sin utilizar etiquetas.
Esto permite identificar patrones visuales latentes y establecer una linea base estructural frente a
la cual evaluar, posteriormente, la incorporacién de imagenes generadas por inteligencia artificial,
en linea con la hipétesis del trabajo. Se utilizaron tres algoritmos con enfoques complementarios:
KMeans, DBSCAN y Clustering Jerdrquico. KMeans brinda una particién eficiente basada en
distancia euclidiana, util como referencia inicial; el método jerarquico permite explorar similitudes a
distintos niveles sin fijar el nimero de grupos; y DBSCAN detecta agrupamientos segin densidad,
ideal para formas irregulares y deteccién de outliers. Esta combinacién permite capturar estructuras
diversas en los datos naturales. Para evaluar la calidad de los agrupamientos se utilizaron métricas
internas como Silhouette y SSE, junto con métricas externas como los indices de Rand ajustado y
de van Dongen, complementadas con visualizaciones en espacios reducidos mediante PCA, T-SNE,
ISOMAP y UMAP. Cabe seifialar que los agrupamientos se realizaron sobre una version reducida
de los datos por PCA (70 % de varianza retenida), lo cual, al tratarse de una técnica lineal, podria
implicar cierta pérdida de informacién que afecte la precision de los resultados de clustering.

Algoritmo de Clustering K-means El algoritmo KMeans representa una estrategia inicial eficaz
para realizar agrupamiento, ya que segmenta los datos en grupos mediante la minimizacién de
distancias a centroides definidos. A pesar de requerir la especificacion previa del nimero de clusters,
su simplicidad computacional y su interpretacion clara lo convierten en una herramienta valiosa para
obtener una primera aproximacion a la estructura del conjunto de datos.

Aplicacion del algoritmo y determinacion de parametros.

Se aplicé el algoritmo K-Means sobre el conjunto de atributos extraidos mediante VGG16 y
reducidos dimensionalmente mediante PCA. Para determinar el nimero 6ptimo de clusters, se
utilizaron dos métricas clave: el Silhouette Score y la Suma de Errores Cuadrados (SSE). Ver figuras

M2 y[13]
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o 10 20 30 w0 50 o 10 20

EY ) EY
Nimero de clusters (k) Namero de clusters (k)

Figura 12: Deteccién de maximos locales en Figura 13: Deteccién de minimos locales en
Silhouette SSE (Codo)
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Los resultados obtenidos muestran que para k = 7 se observa un minimo local pronunciado en
la curva de SSE, lo que sugiere un posible punto de “codo”, indicando un buen equilibrio entre
compacidad y complejidad del modelo. A su vez, este mismo valor de k coincide con el maximo local
mas alto en el coeficiente de silueta (0,1595), lo cual refuerza su validez como una opcién sélida para
el agrupamiento. Si bien se identificaron otros maximos locales en la métrica de silueta para valores
mas altos de k (como k =9, k = 11y k = 17), la mejora en el score es marginal o decreciente, y
podria representar sobresegmentacion sin una ganancia clara en la calidad del clustering. Por tanto,
k = 7 se perfila como una eleccién razonable para representar la estructura interna de los datos con
un buen compromiso entre simplicidad y coherencia de los grupos.

Grafico de Silueta para k = 8 Grafico de Silueta para k = 7

- Silhouette promedio -~ Silhouette promedio
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Figura 14: Gréfico de Silhouette para k = 8 Figura 15: Gréfico de Silhouette para k =7

Dado que el conjunto de imédgenes cuenta con 8§ clases reales, se considerd relevante evaluar el
comportamiento del agrupamiento para k = 8 utilizando un grafico de silueta. Esta visualizacién
permite analizar la validez interna de los clusters generados por KMeans, sin necesidad de recurrir a
las etiquetas durante el proceso de agrupamiento. Al comparar los resultados de k = 7 (valor sugerido
por el andlisis de SSE y Silhouette) con k£ = 8 (coincidente con la cantidad de clases reales), se busca
identificar si el nimero natural de categorias del conjunto se refleja en la estructura no supervisada de
los datos. Si bien un valor de k coincidente con las clases reales podria parecer ideal, su validez se
sustenta tnicamente si el agrupamiento resultante presenta separacién clara entre grupos y valores
altos de silueta, lo que se evalia visualmente en este grafico. Ver figura[T4]y[13]

Bootstrapping: SSE y Silhouette Score

Con el objetivo de obtener estimaciones mds robustas y confiables para la seleccién del nimero 6ptimo
de clusters, se implementd un procedimiento de validacion mediante bootstrap con 500 repeticiones,
evaluando valores de k en el rango de 2 a 15. En cada iteracién se gener6 una muestra con reemplazo
del conjunto de datos reducidos por PCA, se aplicé K-Means y se calcularon tanto el Silhouette
Score como el SSE (Sum of Squared Errors). Esto permitié estimar la media y desviacién estandar
de ambas métricas para cada valor de k, brindando asi una visiéon mads estable y estadisticamente
respaldada del comportamiento del modelo. Los resultados obtenidos pueden observarse en la Tabla

M)y la Figura[16]
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Cuadro 4: Resumen de métricas Silhouette y SSE para distintos valores de &k

k | Silhouette (mean) | Silhouette (std) SSE (mean) SSE (std)

2 0.0787 0.0276 18513296.1000 | 229020.7174
3 0.0804 0.0214 17376571.2500 | 251301.7037
4 0.0934 0.0192 16322651.7060 | 321846.8243
5 0.1121 0.0172 15329635.3840 | 356152.1431
6 0.1286 0.0188 14502203.9900 | 427357.8625
7 0.1437 0.0215 13763950.7220 | 470525.2268
8 0.1546 0.0224 13072519.6540 | 427061.3057
9 0.1573 0.0215 12663256.0700 | 357470.3219
10 0.1562 0.0185 12346426.7860 | 278597.7151
11 0.1501 0.0195 12130191.1620 | 220444.5384
12 0.1438 0.0204 11947626.3120 | 175388.3986
13 0.1388 0.0206 11780520.3220 | 145673.0204
14 0.1321 0.0197 11634909.8380 | 130036.9878
15 0.1271 0.0183 11502970.7540 | 143393.9048
16 0.1236 0.0182 11367824.5560 | 119204.0198

Silhouette Score promedio * std

SSE promedio + std

0.14 4

silhouette Score

® Maximos locales
¥ silhouette Score

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
k k

Figura 16: Bootstrapping: SSE y Silhouette Score

Los resultados muestran una evolucién esperable en ambas métricas: el SSE disminuye progresiva-
mente a medida que aumenta el nimero de clusters, indicando una mayor compacidad interna, aunque
con ganancias decrecientes. Por otro lado, el Silhouette Score mejora hasta alcanzar un maximo
localen k = 9 (0,1573 £ 0,0215), lo que sugiere que esta configuracién ofrece el mejor equilibrio
entre cohesion intra-cluster y separacion entre grupos dentro del rango evaluado. No obstante, los
valores para k = 7y k = 8 también son elevados (0.1437 y 0.1546 respectivamente), y presentan
un comportamiento estable. Esto refuerza que el agrupamiento en torno a 7-9 clusters es razonable,
y permite seleccionar k£ = 7 como solucién final, priorizando interpretabilidad y simplicidad, sin
sacrificar calidad estructural.

Cabe destacar que, si bien el conjunto cuenta con 8 clases reales, el modelo no supervisado
sugiere que 7 clusters son suficientes para capturar la organizacién mds representativa de los datos.
Esta diferencia puede deberse a la existencia de clases visualmente similares, solapamientos entre
categorfas o la presencia de outliers, todos factores que pueden influir en el proceso de agrupamiento
sin etiquetas.
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Evaluacion del agrupamiento respecto a las etiquetas reales.

Clases reales vs Clusters (KMeans)
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Figura 17: Matriz de confusién

La matriz de confusién (ver figura[T7) obtenida al comparar los clusters generados por el algo-
ritmo K-Means con £ = 7 frente a las etiquetas reales revela una correspondencia elevada entre
agrupamientos no supervisados y categorias originales. Clases como car, person, fruit y motorbike
fueron agrupadas de forma casi perfecta, con una precisién superior al 99.5 % en un tnico cluster.
También se observé una asignaciéon dominante para airplane y cat, aunque con leves dispersiones.
Sin embargo, el cluster 0 agrupé conjuntamente imagenes de las clases dog y flower, evidenciando
una confusion estructural que podria atribuirse a similitudes visuales o a la pérdida de informacion
durante la reduccién de dimensionalidad por PCA. A pesar de esta superposicién, la segmentacién
general fue consistente y precisa. Esta conclusion se refuerza con las métricas de evaluacién: el indice
de Rand Ajustado (ARI) alcanzé un valor de 0.8800, lo que indica una fuerte coincidencia entre los
clusters y las etiquetas reales; mientras que el indice de van Dongen fue de 0.0574, reflejando una
baja disimilitud estructural. En conjunto, estos resultados validan que K-Means logré una agrupacién
eficaz en relacion con la estructura real del conjunto de datos.

Visualizacion de los resultados en espacios reducidos.

Figura 18: Visualizacién con T-SNE 2D con cambios en plerplexity

Se realiz6 una visualizacién en dos dimensiones mediante t-SNE con el objetivo de comparar la
estructura descubierta por K-Means (k = 7) con las etiquetas reales del conjunto de datos. La figura
incluye cuatro paneles: el primero muestra las proyecciones t-SNE coloreadas segtn las clases reales,
y los tres restantes representan los agrupamientos generados por K-Means bajo distintos valores de
perplexity (10, 30 y 50). Esta variacién permite analizar como se proyectan los datos segin diferentes
escalas de vecindad. Entre las configuraciones evaluadas, se observd que perplexity=50 ofreci6 la
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representacion mas clara y estructurada de los clusters, revelando mejor separacién entre grupos y
mayor coherencia visual con las clases originales. Esta visualizacion cualitativa aporta evidencia
adicional sobre la correspondencia entre los grupos descubiertos y la estructura real del conjunto. Ver

figura[I§|

K-Means Clustering (k=7) - t-SNE 3D (perplexity=50) Etiquetas reales - t-SNE 3D (perplexity=50)

® Clustero airplane
Cluster 1 car

Cluster 2 cat

Cluster 3 dog

Cluster 4 flower
Cluster 5 39 fruit 30
Cluster 6 motorbike
person

|
5 ° &8 3

©-SNE Dim 3

-10

20

Esne Oim Im

Figura 19: Visualizacién con T-SNE 3D

Se construy6 una visualizacién tridimensional del espacio reducido mediante t-SNE con 3 com-
ponentes y perplexity=>50, a partir de los datos transformados por PCA. El objetivo fue comparar la
organizacion de los clusters generados por K-Means (k = 7) con la distribucién real de las clases en
el conjunto de imagenes. La figura resultante contiene dos graficos: el primero muestra los grupos
asignados por el algoritmo K-Means, mientras que el segundo presenta las etiquetas reales. Esta
representacion permite evaluar visualmente el grado de coincidencia entre ambas estructuras, identifi-
cando posibles solapamientos, separaciones claras o inconsistencias. La eleccién de perplexity=50
resulté adecuada para capturar tanto relaciones locales como globales en el conjunto, y facilité una
observacion mds fluida de la distribucién espacial de los datos en tres dimensiones.

Discusion e interpretacion de los resultados.

El andlisis con K-Means permiti6 explorar la estructura interna del conjunto de imagenes reales
de forma no supervisada, tras una reduccién de dimensionalidad por PCA que conservé el 70 % de
la varianza. Para determinar el nimero 6ptimo de clusters, se evaluaron los valores de Silhouette
Score y SSE, validados por bootstrap con 500 repeticiones. El valor k = 7 emergi6é como el mejor
compromiso entre cohesién intra-cluster y separacidn entre grupos. Visualizaciones con t-SNE en
2D y 3D mostraron cierta correspondencia entre los clusters generados y las clases reales, aunque
con solapamientos evidentes. Esto fue confirmado por la matriz de confusién, donde varios clusters
contienen imdagenes de distintas clases reales, lo cual sugiere similitudes visuales entre categorias o
limitaciones propias del modelo y la reduccién lineal aplicada. Estos hallazgos resultan clave en el
marco de la hipétesis del trabajo, ya que permiten establecer un baseline estructural sobre datos
reales. A partir de esta linea base, serd posible evaluar en etapas posteriores si las imdgenes generadas
por inteligencia artificial se desvian significativamente de esta organizacion, aportando evidencia
sobre su cardcter anémalo o no.

Clustering Jerarquico El clustering jerarquico resulta especialmente ttil para datos visuales, ya
que permite explorar relaciones entre imagenes a distintos niveles de similitud sin requerir un nimero
fijo de grupos. Esta capacidad de revelar jerarquias implicitas lo hace valioso para establecer una
estructura base en imagenes reales, que luego puede compararse con la distribucién de imagenes
sintéticas, en linea con la hipétesis de deteccidon de anomalias visuales.

Aplicacion del algoritmo y determinacion de parametros.
Se aplic6 clustering jerdrquico aglomerativo sobre una matriz de datos previamente normalizada y

reducida mediante PCA. Se evaluaron distintos métodos de enlace: ward, complete, average y single,
variando la cantidad de clusters en un rango de k=2 a k=49.
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Para cada configuracidn, se calcularon las métricas de Silhouette Score y SSE (Suma de Errores
Cuadréticos). Los resultados fueron graficados para comparar visualmente el comportamiento de los
diferentes métodos

Comparacién de Agglomerative Clustering con affinity="cosine’ (excepto ward)

Comparacién de Agglomerative Clustering por método de linkage . tward) 55
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Figura 21: Comparacién de Agglomerati-
Figura 20: Comparacién de Agglomerative ve Clustering con affinity="cosine’ (excepto
Clustering ward)

Adicionalmente, se realiz6 un andlisis comparativo utilizando distancias euclidianas y de coseno
en los métodos de enlace que lo permiten (complete, average, single). Se observé que el uso de la
distancia coseno mejor6 los valores de Silhouette en comparacién con la distancia euclidiana. El
método ward se mantuvo evaluado tinicamente con distancia euclidiana por su restriccion tedrica. Ver

figuras 20]y 2]

Dendrograma - linkage="ward"

1750

1500

1250

1000

Distancia

750

500

34)

(®3)
78)
an

Observaciones o subclusters

(267)
197
(263)
@17
(369)
(191)
(645)
(09)
(o)
(106)
(160)
(122)
(293)
(692)
(494)
EED)
(282)
(167)
(270)
(152)
(243)
(189)
(100

Figura 22: Dendrograma

La figura 22] muestra el Dendrograma asociado al Dataset que puede dar alguna idea de donde
puede hacer un corte que mejor ajuste, aunque no siempre es obvia la respuesta.



Evaluacion del agrupamiento respecto a las etiquetas reales.

Clases reales vs Clusters (Agglomerative Clustering)
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Figura 23: Matriz de confusion

Posteriormente, se aplicé6 Agglomerative Clustering con enlace tipo ward 'y k = 9, y se evalué
la segmentacion resultante comparando los clusters asignados con las etiquetas reales del conjunto
de datos. Para ello, se construy6 una tabla de contingencia, un heatmap y se calcularon métricas de
evaluacion externas. El modelo logré una segmentacion precisa en la mayoria de las clases, con un
indice de Rand ajustado (ARI) de 0.9379 y un V-Measure Score de 0.9564, lo que indica una fuerte
correspondencia entre los agrupamientos no supervisados y las categorias reales. No obstante, se
observé que la clase fruit se dividi6 principalmente entre dos clusters: 712 muestras en el cluster 1 y
288 en el cluster 3. Esta divisién sugiere una variabilidad interna significativa dentro de la categoria,
posiblemente asociada a subgrupos estructurales captados por el modelo jerarquico. Ver figura[23]
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Visualizacion de los resultados en espacios reducidos.

UMAP Dim 2

Finalmente, se utiliz6 UMAP con metric="cosine’ para reducir los datos a 2 y 3 dimensiones,

UMAP 2D - Etiquetas reales
Vecinos=15, Métrica=cosine

UMAP Dim 1
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person
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UMAP 2D - Clustering Jerarquico (k=9)
Vecinos=15, Métrica=cosine

UMAP Dim 1

Figura 24: Visualizacién con UMAP 2D
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permitiendo visualizar las asignaciones de cluster y las clases reales en un espacio latente.

UMAP 3D - Etiquetas reales
Vecinos=15, Métrica=cosine

UMAP 3

UMAP 3D - Clustering Jerarquico (k=9)
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Figura 25: Visualizaciéon con UMAP 3D

Algoritmo de Clustering DBSCAN El algoritmo DBSCAN es especialmente ttil en el andlisis
de datos visuales por su capacidad para identificar agrupamientos de forma arbitraria basados en
densidad, sin necesidad de especificar el nimero de clusters previamente. Esta propiedad le permite
detectar estructuras complejas y separar outliers de manera natural, lo cual es valioso en conjuntos
de imdgenes reales que pueden contener clases poco definidas o ruido visual. Su aplicacién permite
establecer una segmentacién estructural robusta que sirve como base para contrastar la distribucién
de imégenes sintéticas, en coherencia con la hipdtesis de deteccién de anomalias visuales.
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Aplicacion del algoritmo y determinacion de parametros.

Se aplico el algoritmo DBSCAN para segmentar las imdgenes en base a sus vectores de caracteris-
ticas reducidos. El andlisis compar6 el desempeio del algoritmo utilizando dos métricas de distancia:

euclidiana y coseno.

K-distance plot (k=5) - Métrica: cosine
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Figura 26: K-distance plot (k=5) - Métrica:

cosine
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Figura 27: K-distance plot (k=5) - Métrica:
euclidean

Con la métrica euclidiana, DBSCAN no logr6 identificar agrupamientos significativos. En todas
las configuraciones probadas, casi la totalidad de los puntos fueron etiquetados como outliers y los
valores del Silhouette Score fueron negativos, lo que indica una pobre calidad de clustering.

silhouette Score por eps y min_samples (DBSCAN - cosine)
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Figura 28: Silhouette Score por eps y
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Figura 29: Silhouette Score por eps y
min_samples Métrica: euclidean

En cambio, al usar la distancia coseno, los resultados mejoraron notablemente. Se formaron varios
clusters con una baja proporcién de outliers y valores de Silhouette Score en torno a 0.30, lo que
refleja una estructura de grupos mads definida. Esto sugiere que la distancia coseno es mds adecuada
para capturar la similitud entre imdgenes en este espacio de representacion. Ver figuras [26] 28] 27]y

[29]y el cuadro[3]

Cuadro 5: Mejores configuraciones de DBSCAN segun Silhouette Score

# | eps | min_samples | Clusters | Outliers | Silhouette
1104 16 6 280 0.3007
2104 13 6 236 0.3002
3104 10 6 205 0.2999
4103 13 10 1099 0.2554
5103 10 10 984 0.2537

En resumen, DBSCAN combinado con la métrica coseno permitié detectar agrupamientos ttiles,
mientras que con la métrica euclidiana no se logré segmentar de manera efectiva

Evaluacion del agrupamiento respecto a las etiquetas reales. Se aplic6 DBSCAN para agrupar

las imdgenes en funcién de sus caracteristicas, obteniendo resultados muy positivos. El modelo
logré formar clusters bien definidos, con un indice de Rand ajustado de 0.7836 y un V-Measure de



0.9088, lo que indica una alta concordancia con las etiquetas reales y una buena separacién entre
grupos. Ademds, DBSCAN logré asignar clusters al 96 % de las imdgenes, dejando solo un pequefio
porcentaje como outliers. Ver figura[30]

Clases reales vs Clusters (DBSCAN con eps=0.4, min_samples=16)
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Figura 30: Matriz de confusién

Al observar la tabla de contingencia, se nota que la mayoria de las clases fueron bien agrupadas:
por ejemplo, las clases airplane, fruit, flower y person aparecen en clusters casi puros. Sin embargo,
destaca el Cluster 2, que agrupa simultdneamente una gran cantidad de imédgenes de cat y dog, lo
que sugiere que estas dos clases no fueron bien diferenciadas por el modelo. Esta superposicion
puede deberse a similitudes visuales entre ambas categorias o a limitaciones en las representaciones
utilizadas.

En resumen, DBSCAN mostré un rendimiento sélido en la segmentacion no supervisada del
conjunto de imagenes, con una agrupacién precisa en la mayoria de las clases y solo una confusién
importante entre gatos y perros.

Visualizacion de los resultados en espacios reducidos.

Se utiliz6 la técnica DBSCAN para agrupar las imédgenes en el espacio reducido por PCA, emplean-
do los pardmetros eps=0.4 y min_samples=16, con distancia basada en el coseno. Esta configuracién
fue elegida por presentar un buen equilibrio entre nimero de clusters y proporcién de outliers, ademés
de obtener un alto Silhouette Score.

Isomap 2D - Etiquetas reales Isomap 2D - Clustering DBSCAN
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Figura 31: Visualizacién con ISOMAP 2D
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Para visualizar los resultados, se aplicé una reduccién adicional mediante Isomap a dos dimensiones.
En la figura resultante se comparan las etiquetas reales con los clusters generados por DBSCAN.
Se observa que, aunque algunos grupos coinciden parcialmente con las clases originales, también
hay una proporcién considerable de puntos etiquetados como outliers, reflejando la sensibilidad
de DBSCAN a la densidad local. Esta representacién permite analizar la estructura de los datos
desde una perspectiva no supervisada y evaluar la capacidad del modelo para detectar regiones bien
definidas en el espacio de caracteristicas. Ver figuras[31]y[32]

Isomap 3D - Etiquetas reales Isomap 3D - Clustering DBSCAN
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Figura 32: Visualizacién con ISOMAP 3D

Comparacion métodos de clustering

El algoritmo K-Means permiti6 identificar una segmentacion efectiva del conjunto de imagenes
reales, mostrando agrupamientos coherentes en clases como car, person, fruit y motorbike, con una
precision superior al 99.5 % en algunos casos. Sin embargo, present$ solapamientos entre clases como
dog y flower, probablemente debido a similitudes visuales o a la pérdida de informacién causada por
la reduccién de dimensionalidad con PCA. Ademads, es importante remarcar que K-Means requiere
definir el nimero de clusters de antemano y es sensible a la presencia de outliers, lo que puede afectar
negativamente la estabilidad del agrupamiento.

Por otro lado, el clustering jerarquico aglomerativo con enlace ward obtuvo los mejores resultados
globales, con un ARI de 0.9379 y un V-Measure de 0.9564. No solo logrd una alineacidén precisa con
las etiquetas reales, sino que también capté subestructuras internas relevantes, como la divisién de la
clase fruit en dos agrupamientos bien definidos. Esta capacidad de representar jerarquias lo convierte
en una herramienta particularmente ttil para explorar categorias visuales complejas y heterogéneas.

En cuanto a DBSCAN, su enfoque basado en densidad permitié detectar agrupamientos sélidos en
clases como airplane, fruit y person, ademas de identificar outliers de forma natural. No obstante,
mostré dificultades para separar las clases cat y dog, posiblemente debido a representaciones visuales
similares. En el contexto de este trabajo, donde se busca detectar anomalias visuales generadas
artificialmente, estas técnicas de clustering no supervisado ofrecen una base estructural inicial para
contrastar con la distribucion de imdgenes sintéticas. Asi, contribuyen a validar la hipétesis de que
las imdgenes anémalas pueden diferenciarse estructuralmente sin necesidad de etiquetas previas.

Entre los tres algoritmos evaluados, el clustering jerdarquico y DBSCAN son los que mejor respaldan
la hipétesis del trabajo, ya que permiten identificar patrones estructurales y detectar desviaciones sin
requerir etiquetas previas. El clustering jerdrquico facilita una exploracion detallada de las relaciones
entre imagenes reales, lo que resulta ttil como linea base para contrastar la presencia de anomalias.
Por su parte, DBSCAN destaca por su capacidad para detectar outliers y agrupamientos de forma
arbitraria, lo que lo vuelve especialmente valioso para identificar imagenes sintéticas que no encajan
en la estructura natural del conjunto. En cambio, K-Means, aunque ttil como aproximacion inicial,
resulta menos adecuado en este contexto debido a su sensibilidad a outliers y la necesidad de fijar un
nidmero de clusters a priori.

20



3.1.3. Clustering Jerarquico con anomalias

Distribucién de Clases (Reales y Fake) vs Clusters (Agglomerative Clustering)
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fruit_real -
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person_real

Clusters asignados

Figura 33: Matriz de Confusion

Dado que el clustering jerarquico aglomerativo tuvo mejor performance de acuerdo a los parametros
de validacion anteriormente presentados decidimos aplicarlo pero al dataset inoculado con anomalias
para evaluar su comportamiento. La Figura 30 ilustra cémo se distribuyen las etiquetas reales en los
distintos clusters generados de manera no supervisada mediante clustering jerarquico en este nuevo
dataset. El objetivo de esta visualizacion es evaluar si los agrupamientos obtenidos coinciden con
las clases originales y, ademds, examinar si el algoritmo logra diferenciar entre imdgenes reales y
sintéticas (andmalas). En linea con los resultados sobre el conjunto original sin anomalias, observamos
que el algoritmo logra separar de manera efectiva muchas de las clases reales en agrupamientos
coherentes. Ahora bien, como podria esperarse para las anomalias "sttiles", es decir aquellas son
imitaciones realistas, estas son agrupadas dentro de los mismos clusters que sus contrapartes reales. El
escenario es otro cuando se trata de agrupar las anomalias de clase "brainrot", pues no se diferencian
en un cluster tnico sino que se van solapando en distintos agrupamientos de manera altamente
diversificada. Esto sugiere que el algoritmo no logro ser resiliente ante ese tipo de inoculaciones ni
diferenciar imitadores realistas de las imdgenes originales.
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Conclusiones

Los resultados obtenidos a partir de los tres algoritmos de clustering evaluados —K-Means,
DBSCAN Yy clustering jerdrquico aglomerativo— sobre los componentes de vectores de atributos
(extraidos de VGG16) de las imagenes permiten validar parcialmente la hipétesis del trabajo. En
particular, el clustering jerarquico y DBSCAN demostraron ser los enfoques mds adecuados para
detectar estructuras internas dentro del conjunto de imdgenes naturales sin anomalias.

K-Means, aunque ttil como aproximacion inicial, presentd limitaciones notables: su sensibilidad
a outliers y la necesidad de definir previamente el nimero de cldsteres afectaron negativamente su
desempeiio, en especial en clases con alta variabilidad visual.

El clustering jerarquico aglomerativo se destaco por su capacidad para representar relaciones
jerdrquicas y captar subestructuras dentro de clases complejas, como se evidencié en la division
interna de la categoria fruit. Ademads, obtuvo los mejores resultados cuantitativos del andlisis, con un
ARI de 0,9379 y un V-Measure de 0,9564, lo que respalda su utilidad como herramienta sélida para
explorar agrupamientos visuales.

A partir de estos resultados, se seleccion6 el clustering jerarquico como tnico algoritmo para el
segundo experimento, en el cual se introdujeron imagenes sintéticas (IFGIA) al conjunto original.
En esta fase, se observé que las anomalias visuales sutiles —aquellas que imitan de forma realista
elementos naturales— tienden a agruparse junto a sus contrapartes reales, lo que refleja una limitacién
del enfoque no supervisado ante modificaciones visuales de baja intensidad. En cambio, las anomalias
grotescas (o “brainrot”’) no formaron un clister Gnico ni se separaron de forma consistente, sino que
se dispersaron entre distintos grupos, lo que evidencia que la resiliencia del algoritmo frente a este
tipo de alteraciones atin es limitada.

En conjunto, se concluye que el clustering jerarquico aglomerativo si bien resulté muy eficaz para
separar clases naturales, al exponerlo a anomélias se presentan resultados diversos. Por un lado, las
mads sutiles (imitaciones realistas de las imagenes originales) se agrupan en los mismos clusters que
la de las clases originales. Por otro, las anomalias grotescas se distribuyen pero sin un patrén claro
de homegenidad. Futuras investigaciones podrian contemplar un k més grande para evaluar si existe
separabilidad en sub-clusters que puedan diferenciar, por ejemplo, gatos reales de gatos falsos.
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